TECHNICAL BULLETIN NO. 19

A FIELD STUDY OF FLOCCULATION AS A FACTOR IN ESTUARIAL SHOALING PROCESSES

by

R. B. Krone

June 1972

KECK REFERENCE ROOM (138-78) 136 W. M. KECK LABORATORY California Institute of Technology Pasadena, California 91125 U.S.A.

Prepared for the

Committee on Tidal Hydraulics
CORPS OF ENGINEERS, U. S. ARMY

ARMY-MRC VICKSBURG, MISS.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

REPORTS OF COMMITTEE ON TIDAL HYDRAULICS

Report No.	Title						
1	Evaluation of Present State of Knowledge of Factors Affecting Tidal Hydraulics ond Related Phenomena	Feb. 1950					
2	Bibliography on Tidal Hydraulics	Feb. 1954					
	Supplement No. 1, Material Compiled Through May 1955	June 1955					
	Supplement No. 2, Material Compiled from May 1955 to May 1957	May 1957					
	Supplement No. 3, Material Compiled from May 1957 to May 1959	May 1959					
	Supplement No. 4, Material Compiled from May 1959 to May 1965	May 1965					
	Supplement No. 5, Material Compiled from May 1965 to May 1968	Aug. 1968					
	Supplement No. 6, Material Compiled from May 1968 to May 1971	July 1971					
3	Evaluation of Present State of Knowledge of Factors Affecting Tidal Hydraulics and Related Phenomena (revised edition of Report No. 1)	May 1965					
Technical Bulletin No.	Title	Date					
1	Sediment Discharge Meosurements in Tidal Waterways	May 1954					
2	Fresh Water-Salt Water Density Currents, a Major Cause of Siltation in Estuaries	April 1957					
3	Tidal Flow in Entrances	Jan. 1960					
4	Soil os a Factor in Shoaling Processes, a Literature Review	June 1960					
5	One-Dimensional Analysis of Salinity Intrusion in Estuaries	June 1961					
6	Typical Major Tidal Hydraulic Problems in United States and Research Sponsored by the Corps of Engineers Committee on Tidal Hydraulics	June 1963					
7	A Study of Rheologic Properties of Estuarial Sediments	Sept. 1963					
8	Channel Depth as a Factor in Estuarine Sedimentation	Mar. 1965					
9	A Comparison of an Estuary Tide Calculation by Hydraulic Model and Computer	June 1965					
10	Significance of Clay Minerals in Shoaling Problems	Sept. 1966					
11	Extracts from The Manual of Tides	Sept. 1966					
12	Unpublished Consultation Reports on Corps of Engineers Tidal Projects	Dec. 1966					
13	Two-Dimensional Aspects of Salinity Intrusion in Estuaries: Analysis of Salinity and Velocity Distributions	June 1967					
14	Tidal Flow in Entrances; Water-Level Fluctuations of Basins in Communication with Seas	July 1967					
15	Special Analytic Study of Methods for Estuarine Water Resources Planning	Mar. 1969					
16	The Computation of Tides and Currents in Estuaries and Canals	Sept. 1969					
17	Estuarine Navigation Projects	Jan. 1971					
18	History of the Corps of Engineers Committee on Tidal Hydraulics	June 1972					
19	A Field Study of Flocculation as a Factor in Estuarial Shooting Processes	lune 1972					

Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

PRESENT MEMBERSHIP OF COMMITTEE ON TIDAL HYDRAULICS

Members

P. A. Becnel, Jr. New Orleans District

E. B. Conner Office, Chief of Engineers

A. B. Davis, Jr. Galveston District
J. W. Harris Savannah District

F. A. Herrmann, Jr. Waterways Experiment Station

D. W. Hogan Seattle District

J. B. McAleer Office, Chief of Engineers

J. F. Phillips Philadelphia District

T. Saville, Jr. Coastal Engineering Research Center

E. A. Schultz San Francisco District

H. B. Simmons Waterways Experiment Station

<u>Liaison</u>

J. H. Douma Office, Chief of Engineers

Consultants

J. B. Tiffany Chairman

J. B. Lockett Recorder

Dr. Arthur T. Ippen Massachusetts Institute of Technology

Dr. G. H. Keulegan Waterways Experiment Station

Dr. D. W. Pritchard Johns Hopkins University

C. F. Wicker Consulting Engineer, Philadelphia

FOREWORD

Laboratory and field studies of the transportation processes in estuaries that lead to accumulation of cohesive sediments in deepened channels and mooring areas have been conducted by a number of branches of the Corps of Engineers. These studies have been part of a continuing effort to develop methods of harbor design and maintenance procedures that would reduce the continuing costs of dredging. It is now recognized that suspended sediments have important roles in the maintenance of water quality for recreation and wildlife, and these studies will provide valuable information for estuarial water-quality management.

This is the latest in a sequence of studies on flocculation of suspended sediment particles and on the importance of flocculation processes to the movement and accumulation of cohesive particulate materials in estuaries. Earlier studies by this author that include portions concerned with flocculation were the "Silt Transport Studies Utilizing Radioisotopes," 1956-60, and the "Flume Studies of the Transport of Sediment in Estuarial Shoaling Processes," 1959-62, both for the San Francisco District; "Suspension of Cohesive Sediment by Wind-Generated Waves," 1963-64, for the Coastal Engineering Research Center; and "A Study of Rheologic Properties of Estuarial Sediments," 1961-63, for the Committee on Tidal Hydraulics. Only the first of these included field studies with observations of sediment movement in parts of an estuary. The subsequent laboratory studies have provided additional knowledge of the changing character of cohesive materials in deposits and during movement in suspension and of the processes of deposition and scour of cohesive particles. The field study reported herein was designed to

show the importance of these processes to the formation of shoals in an estuary.

Portions of this study were carried out by the South Atlantic Division Laboratory, the Savannah District, and the Waterways Experiment Station of the U. S. Army Corps of Engineers. The interest and splendid cooperation of the personnel in all of these organizations are largely responsible for the success of this study. Principals in each of these agencies were Mr. F. M. Bell of the South Atlantic Division, who was responsible for analyses of the water samples; Mr. J. W. Harris of the Savannah District and member of the Committee on Tidal Hydraulics, who organized the field crews and equipment and arranged for sampling of shoal material and fathometer surveys; Mr. H. J. Rhodes of the Waterways Experiment Station, who supervised the field measurements, collected and organized the data, and supervised the construction and testing of the bottom sensor; Mr. J. R. Compton of the WES Soils Division, who was responsible for analyses of shoal samples; Mr. H. B. Simmons of the WES Hydraulics Division and Member, CTH, who was responsible for organization and administration of the project; and Mr. J. B. Tiffany, Chairman, Committee on Tidal Hydraulics, who monitored the study during its planning and execution.

Mr. C. F. Wicker, Consultant to the Committee, Mr. H. B. Simmons, and the author planned the study; and Messrs. Wicker and Simmons reviewed the report before final reproduction.

The contributions made by all participants, and especially the detailed planning and review contributed to the study by Messrs. Wicker and Simmons, are gratefully acknowledged and sincerely appreciated.

CONTENTS

																					Page
FOREWORD					•						•		•				•		•		iii
LIST OF I	FIGUI	RES .							•						•	•	•				vii
NOTATION							•		•				•		•	•	•				ix
SUMMARY	• • •						•								•			•	•		xi
I. INT	rodi	UCTION	i		•		•						•		•		•				1
II. STU	JDY A	APPROA	CH AN	D PR	OCE	DURE	ES		•				•		•		•	•			3
		y Loca rument																			3 5
III. RES	SULTS	S OF M	ŒASUR	EMEN	TS .	AND	WA'	ΓER	AN	ΙAL	YS	ES	•								9
(Curre	l Samp ents, view.	Suspe	nded	So	lids	5,	and	Sa	li	ni	ti	es		•			•		•	9 12 30
IV. DIS	3CUS	SION.		• •						•							•			•	32
]]]	Inter Bed S Predo Floc	culati rnal S Shear ominar Settl ended	Sheari Stres ice Cu ling V	ng a s rves eloc	t S iti	avar • • • es •	nna •	h H • • • •	arb •	or •	•		•	 	•				•	•	32 36 44 45 47 49
V. TR	ANSPO	ORTATI	ON AN	D SH	OAL	ING	PR	OCE	SSE	S	IN	T	ΗE	SI	UD	Y A	ARF	EΑ		•	52
VI. MET	THODS	S FOR	ALLEV	IATI	NG	SHOA	ALI:	NG .	ΑТ	SA	VA	NN.	AН	HA	RB	OR	•		•	•	56
ľ	Minir	the S mize S ce Int	Suspen	ded	Sed	imer	nt	Con	cer	ıtr	at	io	ns			•	•	•			56 56 57
VII. COI	NCLUS	SIONS	AND R	ECOM	MEN	DAT]	ON	S F	OR	FU	RT	HE	R	STU	JDY	•	•	•		•	58
REFERENCI	ES.				•		•		•	•	•	•	•		•	•			•	•	61
APPENDIX	A:	FRESH STUDI	WATER ES	INF	LOW	s, 1	rID:	ES,	AN	D	WI	ND	S I	DUF	RIN	G I	TI	CLI)		
APPENDIX	в:	CONST	RUCTI	on s	KET	CHES	3 0	FВ	OTI	'OM	S	EN	SO1	R							
APPENDIX	C:	DATA	FROM	SHOA	L S	AMPI	Œ.	ANA	LYS	ES	,										
APPENDIX	D:		CITIES MEAS	-							PE	ND]	ED	SC	LΙ	DS	FF	ROM	1		*

^{*} Published under separate cover.

LIST OF FIGURES

Figure		Page
1	Locations of water measurement and shoal sampling stations	3
2	Midtide cross sections at the sampling stations	4
3	Bottom sensor	6
14	Instrument string for water sampling and current measurements	7
5	Bulk densities of top centimeter of shoal	11
6	Currents, suspended sediments, and salinities at sta 130+500 during a spring tide	12
7	Currents, suspended sediments, and salinities at sta 125+500 during a spring tide	15
8	Currents, suspended sediments, and salinities at sta 109+667 during a spring tide	18
9	Currents, suspended sediments, and salinities at sta 130+500 during a mean tide	20
10	Currents, suspended sediments, and salinities at sta 125+500 during a mean tide	22
11	Currents, suspended sediments, and salinities at sta 109+667 during a mean tide	23
12	Currents, suspended sediments, and salinities at sta 130+500 during a neap tide	26
13	Currents, suspended sediments, and salinities at sta 125+500 during a neap tide	27
14	Currents, suspended sediments, and salinities at sta 109+667 during a neap tide	29
15	Current profiles in a 40-ft channel with uniformly dense fluid and hard wall	36
16	Ebb current profiles at sta 130+500, 125+500, and 109+667 during a mean tide	38

LIST OF FIGURES (CONTINUED)

Figure		Page
17	Salinity profiles at sta 130+500, 125+500, and 109+667 during a mean tide ebb	39
18	Flood current profiles at sta 130+500, 125+500, and 109+667 during a mean tide	41
19	Salinity profiles at sta 130+500, 125+500, and 109+667 during a mean tide flood	42
20	Average local shearing rates in a 40-ft channel	43
21	Ebb predominance in the study area during a spring tide, mean tide, and neap tide	46
22	Plot to find settling velocities of flocs	48
23	Transport and shoaling processes in the study area	52

ИОТТРАТОИ

- a Reference elevation above bed
- A Slope of logarithmic velocity profile
- $\mathbf{c}_{ exttt{salt}}$ Concentration of dissolved salts
 - C Concentration of uniform suspended particles in an open channel
 - d Water depth
 - E Capture coefficient
 - g Acceleration of gravity
 - G RMS shearing rate, local velocity gradient
- H,I,J Frequency of collisions on a suspended particle by other particles due to differential settling, Brownian motion, or fluid shearing, respectively
 - k Boltzman's constant, Karman's constant
 - m_d Mass of dried particles
 - m_s Mass of water-particle mix
 - n Number concentration of suspended particles
 - P Energy dissipated per unit volume of fluid
 - ${\bf R}_{{f i}\;{f i}}$ Collision radius for i-size and j-size particles
 - t Time
 - T Absolute temperature
 - u Temporal mean horizontal velocity at elevation z above bed
 - u* Shear velocity
 - V Relative velocity of two settling particles
 - w Settling velocity of suspended aggregates
 - z Elevation above bed
 - ζ w/ku,
 - μ Viscosity of water

- ν Kinematic viscosity
- ρ Water density
- ρ Density of mineral particles
- ρ Density of water-particle mix
 - τ Shear at elevation above bed z
- τ_{o} Shear on bed surface

SUMMARY

Simultaneous measurements of currents, salinities, and suspended sediment concentrations were made at locations upstream, inside, and downstream of an area of rapid shoaling in Savannah Harbor throughout a tidal cycle during each of three tide ranges to learn the importance of flocculation processes to the formation of shoals. The sampling stations were located in the zone of mixing of river and ocean waters. As shown in the data, chemical and hydraulic conditions prevail that together with an abundant supply of suspended particles provide the cohesion, frequency of collision, and time for formation necessary to form aggregations of large numbers of mineral particles. Changes of concentration at slack and concentration profiles at the strength of flow showed that particles have settling velocities much greater than those of the individual particles that comprise the shoal. Flocculation determines the settling velocities of suspended material at Savannah.

The data also provide information on deposition and scour of sediment materials. Net upstream movement of sediment was enhanced by the deposition of suspended material at slack water followed by resuspension of larger amounts of material during flood flows than during ebb that resulted from larger bed shears imposed by flood flows. Sediment accumulates wherever later bed shears are insufficient to resuspend all of the material that deposits during periods near slack water. Material that is resuspended in the shoaling areas is transported through the face and upstream through the toe of the saline intrusion and is returned downstream in the less saline upper portion of the flows where hydraulic conditions facilitate aggregation. Particles settle downstream and subsequently can return upstream with flows near the bed. This recycling provides long times for flocculation and accounts for turbidity maxima observed along the axis of estuaries.

Control of shoaling in such areas includes application of any means that reduces suspended sediment inflow, increases sediment outflow, or maintains sufficient bed shears to keep the sediment in motion.

Appendixes A, B, and C included herein present data from field studies, sketches of the bottom sensor, and data from shoal sample analyses, respectively. Appendix D, which presents velocities, salinities, and suspended solids from field measurements and samples, is published under separate cover in limited quantity. Copies are available upon request from the Recorder, Committee on Tidal Hydraulics, care of U. S. Army Engineer Waterways Experiment Station, Corps of Engineers, P. O. Box 631, Vicksburg, Mississippi 39180.

A FIELD STUDY OF FLOCCULATION AS A FACTOR IN ESTUARIAL SHOALING PROCESSES

I. INTRODUCTION

"Salt" flocculation has been postulated for years to account for observed deposition of riverborne suspended sediments where river waters mix with ocean waters in estuaries. Simmons, Schultz and Simmons, Schultz and Tiffany, and Simmons have shown, however, that in estuaries such as the Savannah River estuary accumulations of sediment occur where landward transport of sediments by intruding sea water diminishes, i.e. near the landward limit of saline water intrusion where "river and ocean waters mix."

Harleman and Ippen⁵ have further described the relation between the nodal point of fresh and saline water circulation near the bed and the formation of shoals. Deposition in this region appears from these studies to be primarily the consequence of net water movement resulting from density differences between fresh and ocean waters, which has led Meade^{6,7} and others to question whether flocculation is a significant factor in estuarial shoaling processes.

There is little doubt that shoaling in this region is a more complex process than simple aggregation and settling resulting from the mixture of river and ocean waters. Maximum concentrations of suspended sediments are observed in the mixing regions with diminishing concentrations both landward and seaward of the mixing zone (Meade, 7 Postma, 8 and Schubel), which is not accounted for in the simple model. Shoaling does not always occur in the mixing region, as in San Francisco Bay where it occurs in neighboring areas, which indicates that transport from the mixing zone is possible even if flocculation occurs there.

Fine sediment particles are carried in suspension for long distances by even sluggish rivers and then are deposited in the river estuary. There must be an increase in the settling velocity of such riverborne material after it enters the estuary. Only aggregation of the fine mineral and organic particles or of small aggregates suspended in the

river waters can account for an increase in their settling velocity. Laboratory studies 10,11 have shown that aggregation of estuarial sediments can occur at ocean water salinities greater than about 1 g/ ℓ , and conditions that promote aggregation enhance the rate of deposition of suspended estuarial sediments from flowing water. These studies also showed that such aggregates are sufficiently strong to withstand transporting conditions.

Shoaling in the region in an estuary where river and ocean waters mix, therefore, can result from both currents near the bed that transport suspended sediment into the region from both downstream and upstream, and whose transporting capacity is diminished in the area, and from enhanced settling velocities of the transported particles resulting from their aggregation. This study is an investigation of the processes of aggregation in such a region and of the importance of aggregation to the formation of shoals. It was expected that such knowledge would lead to channel and harbor design and maintenance procedures that would reduce shoaling rates.

II. STUDY APPROACH AND PROCEDURES

The laboratory studies at the University of California 10,11 using uniform steady flow in recirculating flumes and rheological measurements indicated that flocculation could be a significant factor in estuarial shoaling. Field measurements were necessary to confirm the importance of aggregation to actual shoaling and to provide descriptions of cohesive suspended sediment behavior under variable density tidal flow conditions. Savannah Harbor was selected for this study because of these characteristics: It has simple geometry, a factor that is discussed further below. It is a typical example of a partially mixed estuary, which is the most common type found in the United States. Most of the shoaling occurs in a well-defined reach. Further, a number of field studies have been made in the Savannah estuary, and additional data will complement the existing information and contribute toward an overall description of sediment transport patterns there.

Study Location and Observations

A plan of Savannah Harbor, presented in fig. 1, shows the portion

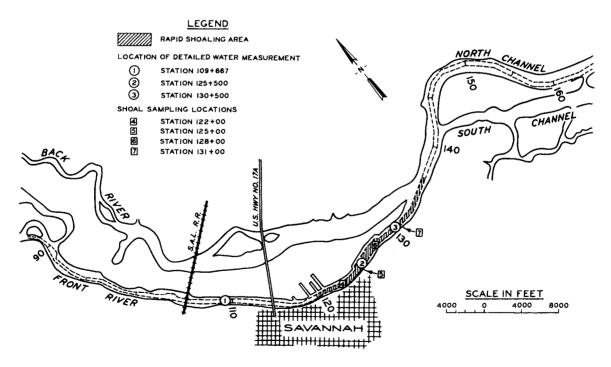


Fig. 1. Locations of water measurement and shoal sampling stations

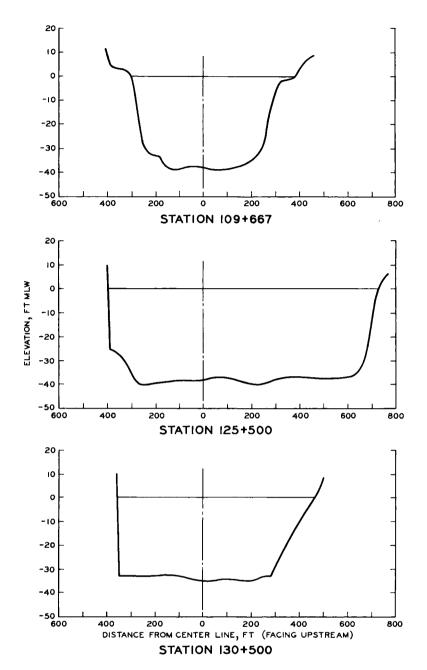


Fig. 2. Midtide cross sections at the sampling stations

of the channel subject to rapid shoaling and the locations of the three current measuring and water sampling stations and the four shoal sampling stations used for this Sampling stastudy. tions were desired in uniform, straight reaches upstream and downstream from the area of rapid shoaling, and a third station was planned within the area of rapid shoaling. As shown in fig. 1, sta 109+667 and 125+500 achieved these conditions. Location of sta 130+500, however, was compromised by the junction of Back River and was located within the shoaling area at a location downstream from the area of maximum shoaling. Cross

sections of the channel at the water sampling stations are shown in fig. 2.

Vertical distributions of suspended sediment, salinity, and currents in water entering, passing through, and leaving the shoaling area

were determined. These profiles were obtained at half-hour intervals simultaneously at each of the three stations during a complete tidal cycle. Similar sets of observations were made during a spring tide on 24 September, a mean tide on 8 October, and a neap tide on 15 October 1968. It was anticipated that these data would show directly the nature of sediment movement into the area; to what extent conditions that promote aggregation of suspended materials occur there; and during times that the velocity profile was determined by bed friction, the data should enable calculation of settling velocities of aggregates.

Freshwater inflows, winds, and tides occurring during the measurements were also determined. Samples of bed material were taken to provide descriptions of the particles, and bed surveys were made to confirm the occurrence of shoaling in the region. The dates of the field measurements and conditions that prevailed are summarized below. Environmental conditions are presented in detail in Appendix A.

		Tide Range		Freshwater	W	Winds		
Date		f	<u>t</u>	Discharge	Avg	Direc-		
1968	Measurements	Rise	<u>Fall</u>	<u>cfs</u>	mph	<u>tion</u>		
20 Sep	Shoal samples			6930	8.6	E		
24-25 Sep	Currents, suspended sediment, salinity	8.6	8.7	6650	6.0	E		
1 Oct	Shoal samples			7210	5.6	SE		
8 Oct	Currents, suspended sediment, salinity	7.6	7.7	6840	5.3	NW		
11 Oct	Shoal samples			7050	10.9	E		
15 Oct	Currents, suspended sediment, salinity	5.4	5.2	6960	11.7	NE		
22 Oct	Shoal samples			7950	5.6	SE		

Instrumentation and Field Procedures

Deposition of suspended materials and resuspension of deposits occur at the bed surface. The water velocities near the bed increase rapidly with distance from the bed surface. Settling of suspended matter to the bed is opposed by the combination of vertical components of turbulent flow and a concentration gradient above the bed. The shear stress on the bed, an important factor in the resuspension of deposits, is

determined by the velocity profile close to the bed. It is evident that the conditions in the water near the bed surface are important to the study, and that the elevations of the sampling points need to be accurately referenced to the bed surface.

The bed material in such regions is a soft mud. It will not support a sounding weight, and sometimes during periods of slow bottom currents it has a density so slightly greater than the water that only a ghostlike image appears on a fathometer trace. Such material is called "fluid mud" or "fluff." If such a deposit has sufficient strength to resist the shear of the water flow, however, it appears to the flow as the bed surface. For the purposes of this study the bed surface is defined as the elevation below which the current is zero when there is flow in the overlying water.

The ghost on the fathometer trace usually has a well-defined smooth upper surface. There was no assurance, however, that the upper surface was not the moving upper boundary of freshly eroded suspended sediment. Another means was needed to ascertain the elevation of the

Fig. 3. Bottom sensor

bed during each set of measurements in the profile, which led to the design for this study of a shear-strength sensitive bottom sensor. The rationale for this sensor was the observation that the shear strength necessary to resist tidal flows should be detectable and that the bed surface should be smooth and sharply defined.

The bottom sensor, shown in fig. 3, consists of a 5-in.-diam hoop, or a short cylinder, 1-1/2 in. high, constructed of 0.005-in.-thick brass sheet. Three radial 0.005-in.-thick strips 1-1/2 in. high extend from a small concentric cylinder to

the hoop. When such a hoop is lowered to a sediment bed with the axis of the hoop vertical, it will settle until the total shear on the metal faces compensates the submerged weight of the hoop. The sides of three 3/4-in.-diam cylinders 2 in. long were soldered to the upper edges of the radial vanes and were filled with gasoline and water to adjust the submerged weight of the bottom sensor to 0.11 g. This sensor will respond to a bed surface that has a shear strength of 0.25 dynes/cm². This is well below the shear strength of aggregates of estuarial sediments measured in the laboratory.

The small inner cylinder of the sensor slides freely over a short brass tube containing a magnetic reed switch. Three tiny ceramic magnets mounted at the roots of the radial vanes actuate the switch without causing appreciable friction to the movement of the sensor. An

8-in.-diam shield is provided around the sensor to reduce the effects of currents on it and to protect the sensor against physical damage. Construction sketches of the bottom sensor are included in Appendix B.

The sensor was mounted on a stiff rod 1.0 ft below a Gurley current meter. Also mounted on the rod were a 100-1b weight, an 18-in.-diam plate to reduce vertical motions from the boat, and a current direction transmitter. The instrument string is shown in fig. 4. The open end of a

Fig. 4. Instrument string for water sampling and current measurements

3/8-in.-diam plastic tube was fastened behind the current meter and the other end was connected to an electric pump aboard the boat for sampling. The magnetic switch was connected to the Gurley current meter through a resistor and via the wire normally connected to the Gurley meter to a tone generator and earphones. The battery-operated tone generator provided a tone whenever the bottom sensor was lifted by sediment or when the current meter contacts closed.

The bottom sensor was taken to sta 125+500 at a time near slack water when a fluff surface was indicated on the fathometer trace. The bottom sensor was lowered a number of times, and the depth of the bed determined by the bottom sensor was compared with that shown by the fathometer. The agreement was always better than ±0.2 ft, which is about as precise as the fathometer trace could be read. It can be concluded that at slack water the fluff had significant shear strength.

The measuring and sampling procedure was as follows. The instrument string was lowered to an elevation where the tone and then its absence were noted as the string was lowered and raised slightly, which indicated that the sensor was at the bed surface. The depth indicator on the instrument cable winch was then set to 1 ft, the velocity at that depth was measured, and a water sample was collected. The current meter and sampling tube intake were then raised successively to 2-, 4-, 8-, 16-, and 25-ft elevations above the bed and to 1.5 ft below the water surface, as indicated by the depth indicator; and velocities were measured and samples were collected at each depth. The sampling pump ran continuously during measurements of each current profile, and time at each elevation was allowed for the contents of the sampling tube to be displaced before collecting the sample. These measurements were made from moored skiffs.

Three to six samples of the shoal were taken at each station with a modified Trask sampler on dates shown in the tabulation on page 5. This sampler provided a 2.5-cm-diam core. The top centimeter was removed from each sample for moisture content determination. The remaining material down to a depth of 1 ft from the top of the samples from each station was composited, sealed in 1-pt jars, and sent to the WES Soils Division laboratory for analysis.

III. RESULTS OF MEASUREMENTS AND WATER ANALYSES

The sediment transportation processes depend on the character of the sediment materials, the currents, the water salinities, and the concentration of suspended sediment. It is convenient to present the analyses of shoal material first, then the results of the velocity measurements and water sample analyses together for each tide condition. The raw data from the measurements are included in Appendix C. Shoal Samples

A total of 16 samples of shoal material, each of which was a composite of several samples, were submitted for analysis of physical properties. One composite was obtained at each of the four sampling stations shown in fig. 1 on 20 September, and on 1, 11, and 22 October, which bracketed the water sampling dates. Details of the physical analyses of the shoal materials are described in the "Report on Physical, Chemical, and Petrographic Data," from the WES Concrete and Soils Divisions included in Appendix C. Analyses of the physical characteristics of the samples showed no discernible patterns with respect to location or sampling date and only small variations in composition.

The average clay size particle content (less than 2 microns diameter) was 58% by weight (range 52 to 65%); most of the remainder was silt size particles, and at most a few percent of the material was fine sand. This large portion of clay size particles makes the bulk material properties largely those of the fine particles.

The mineral composition of the clays was reported to be dominantly kaolin, with minor amounts of clay-mica, montmorillonite, and vermiculite. Minor amounts of quartz, halite, and pyrite were reported with smaller amounts of plagioclase, potassium feldspar, and possibly cristobalite. The clay minerals were poorly crystalline.

The remaining physical data are summarized in the tabulation below, which was taken from the report on physical analyses, and show the small variation in physical properties. The cation exchange capacities shown are unusually high for kaolin, which might be due partially to the large amount of organic matter indicated in the last column. The presence of

relatively small amounts of montmorillonite can significantly increase the cation exchange capacity (CEC).

Field Identification Station No. Sample No.		Specific Gravity G s		change Capacity ivalents/100 g Avg for Shoal	% Weight Loss on Ignition at 800 C	% Organic Con- tent (Weight Loss at 375 C)
131 S	1 5 9 13	2.60 2.53 2.57 2.58	35.2 39.6 32.4 38.2	36.4	16.4 16.6 15.5 n.d.*	9.1
128 N	2 6 10 14	2.53 n.d. 2.58 2.62	35.9 43.3 33.5 32.0	36.2	15.4 n.d. 13.9 16.4	9.0
125 S	3 7 11 15	2.54 2.52 2.60 2.63	38.3 30.4 40.0 38.8	36.9	17.7 16.6 15.7 n.d.	9.4
122 N**	4 8 12 16	n.d. 2.53 2.56 2.53	42.3 38.0 37.6 37.6	38.9	n.d. 15.1 16.3 14.8	9.7

^{*} Not determined.

Neiheisel¹² reported the clay mineral composition of four samples taken from Savannah Harbor (SA 3, SA 4, SA 5, and SA 6). The average mineral compositions were kaolin 0.50, montmorillonite 0.44, and illite 0.06. Typical cation exchange capacities for these minerals are kaolin 3 to 15, montmorillonite 80 to 100+, and illite around 40 milliequivalents/100 g. The compositions reported by Neiheisel would have CEC values near the 36 to 39 averages shown in the tabulation above. It can be concluded that there is an appreciable amount of montmorillonite in the sediment.

The moisture contents of the top centimeter of the individual core samples before composites were made were determined to enable the calculation of bulk density of recently deposited material. The densities can be calculated according to the relation

$$\frac{1}{\rho_{s}} = \frac{1}{\rho_{p}} + \frac{m_{s} - m_{d}}{m_{s}} \frac{1 - \rho_{\ell}/\rho_{p}}{\rho_{\ell} - c_{salt}}$$
(1)

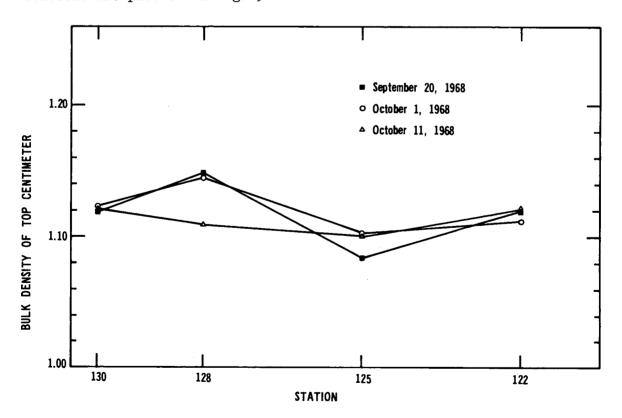
where

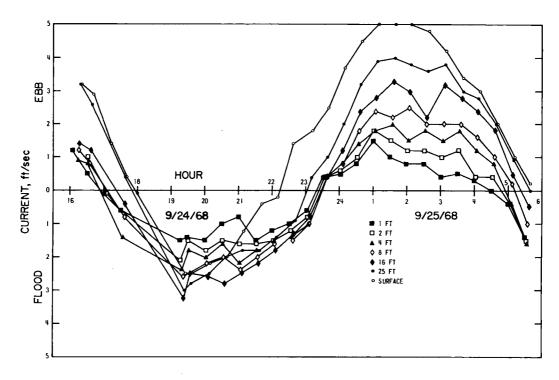
 $\rho_{_{\rm S}}$ = density of the suspension in grams per cubic centimeter $\rho_{_{\rm D}}$ = density of the particles

^{**} It is possible that sample 4 was taken on the south side of the river and samples 8, 12, and 16 were taken on the north side.

m and m = masses of the sample wet and dry, respectively $\rho_{\ell} = \text{density of water with dissolved salts}$ $c_{\text{salt}} = \text{concentration of salt in the pore fluid in grams salt}$ per cubic centimeter of fluid

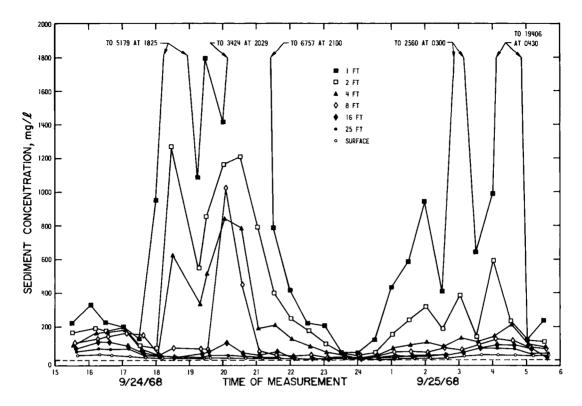
The fraction $(m_s - m_d)/m_s$ is the fraction of the sample that is evaporable water by weight. The salinity of the pore fluid in this region of changing water salinity is uncertain. Aggregates returning from the areas of higher salinity probably have pore fluid salinities like those down the estuary, depending on whether they were dispersed and reaggregated during transit. The fraction of evaporable water in the samples ranged from 0.800 to 0.887. Since it is close to one, only a small error will result by making the pore fluid the same for all, and a uniform salinity facilitates comparison. The pore fluid density was taken to be 1.025 g/cc, and the average particle density was 2.57 g/cc. The calculated densities of the average of three or more samples at each of four stations are plotted in fig. 5.




Fig. 5. Bulk densities of top centimeter of shoal

The data in fig. 5 show a slight decrease in density in the region of most rapid shoaling. The lower densities at sta 122 and 125 probably reflect shorter consolidation times on the average for sediments included in the first centimeter. The low densities of all of the samples reflect their recent deposition.

The characteristics of these sediments important to this study are the fine particle size, the large surface areas of sediment particles indicated by the significant cation exchange capacity, and the uniformity of the sediment material over the study area.


Currents, Suspended Solids, and Salinities

Measurements at Spring Tide. The data obtained from measurements made during a spring tide at sta 130+500 are presented in fig. 6. This station is located downstream from the area of maximum shoaling. The current data presented in fig. 6a show the predominantly ebb currents

a. Currents

Fig. 6. Currents, suspended sediments, and salinities at sta 130+500 during a spring tide (Continued)

b. Suspended sediments

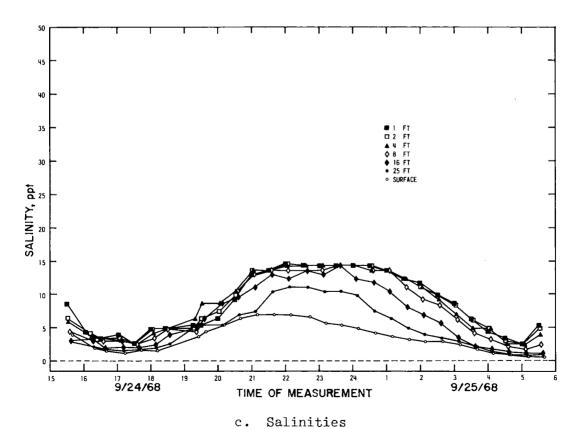


Fig. 6. (Concluded)

near the water surface caused by the freshwater outflow overriding the sea water at lower elevations. The currents at elevations nearer the bed have slightly longer durations of flood than ebb and the flood currents are slightly stronger than those during ebb. Sediment suspended in the waters near the bed would travel a greater distance upstream than downstream.

The suspended sediment concentrations shown in fig. 6b have these striking features. The concentrations of suspended sediment in the lower 2 to 4 ft are very high during the stronger flood and ebb currents near the bed and fall to low values at times near slack water. These particles must have settling velocities much greater than those of 2-micron particles to fall to the bed so rapidly when the current is reduced. The concentration of suspended material is higher during the period of stronger flood currents than during ebb, with pronounced increases at elevations up to 8 ft. This results from the scouring of the bed to a slightly greater depth and the continued propagation upward by the turbulence of the stronger flood currents. There is an increase in suspended sediment concentration all the way to the water surface.

Comparison of figs. 6a and 6b shows also that even small variations of current near the bed have marked effects on the rate of scouring. The pronounced dip in the concentrations at times near 1930, for example, corresponds to a small dip in currents at that time. Changes in concentrations usually lag slightly behind changes in velocities because of the time required for the scouring and deposition processes.

The unusually high concentration of suspended sediment shown in fig. 6b at 0430, when the indicated current at 1-ft elevation was slack, probably resulted from disturbance of the bed or from an erroneous setting of the current meter and sampling tube intake elevation. Suspension of similar material was found in the laboratory to have the characteristics of fluid mud or fluff, suggesting that this sample was taken in the bottom material. The concentration at the indicated 2-ft elevation does not weakly follow the concentration at 1 ft as it does at other times, further supporting this latter interpretation.

The salinity data in fig. 6c show that higher salinities persist longer near the bed than do those near the surface. The salinities are

about 90 degrees out of phase with the currents and are significant at all depths. The appreciable salinities of the waters 25 ft above the bed and at the surface indicate that sea water intruding near the bed mixes upward with the overriding fresh water.

The higher concentrations of suspended sediments scoured from the bed during flood than those scoured during ebb and the greater distance of travel of floodwaters near the bed result in net upstream transport near the bed of sediment materials from sta 130+500.

The data from the measurements made at sta 125+500 during the spring tide are presented in fig. 7. Sta 125+500 is located in the area of maximum shoaling. These data show that the surface flows have a much stronger ebb predominance than those at sta 130+500, and the bottom currents persisted longer, as well as being stronger, during flood than during ebb. The bottom currents are weaker than those at sta 130+500 because of the widened channel at sta 125+500.

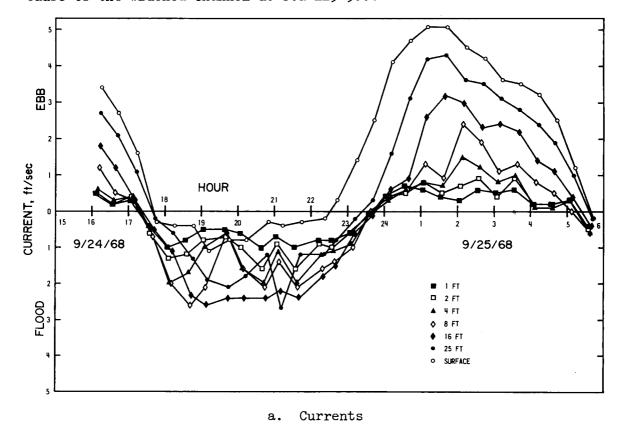
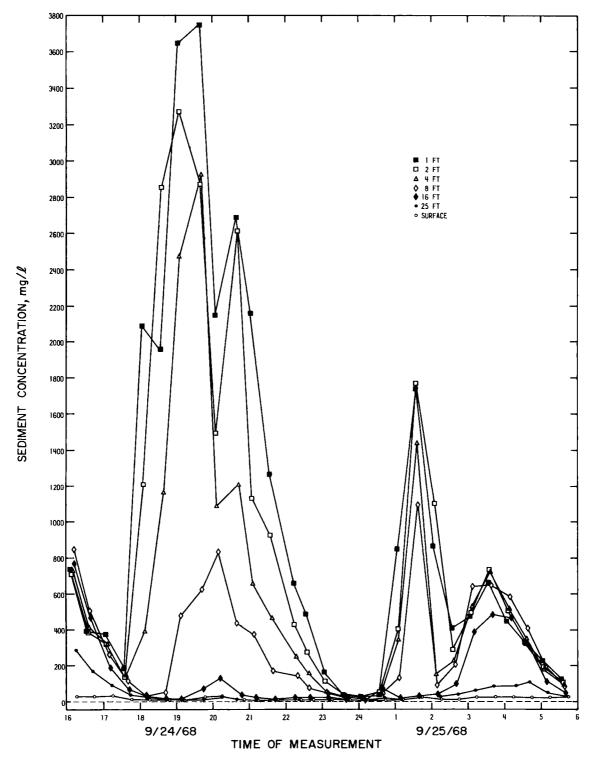



Fig. 7. Currents, suspended sediments, and salinities at sta 125+500 during a spring tide (Continued)

Digitized by Google

b. Suspended sediments

Fig. 7. (Continued)

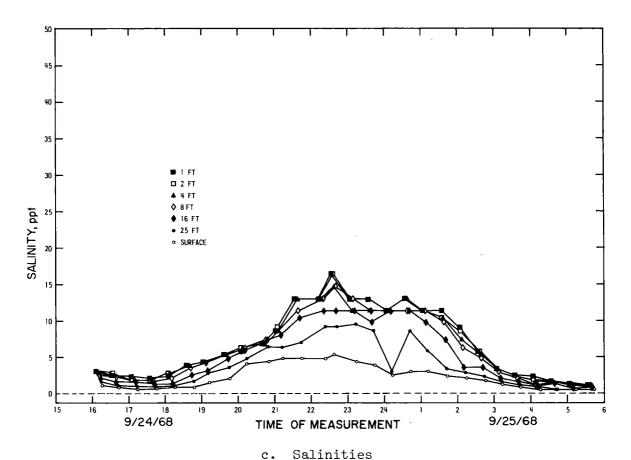
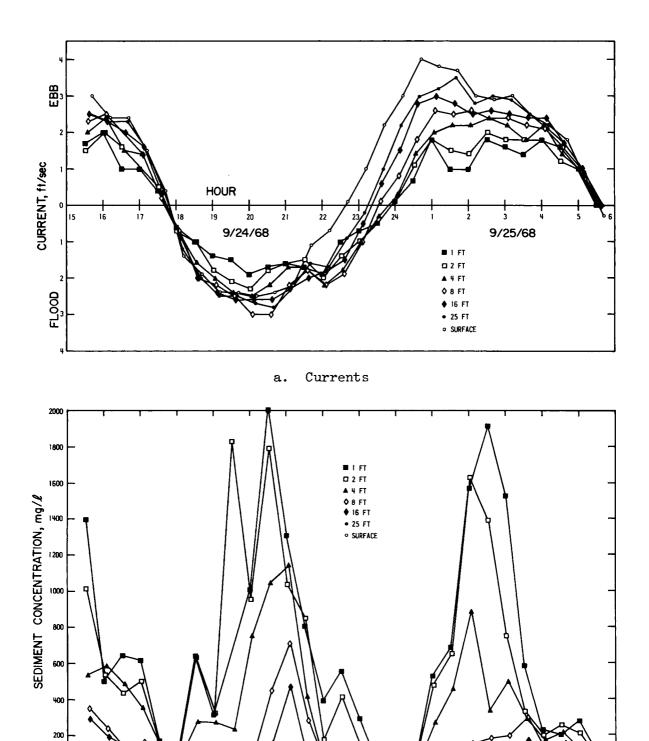



Fig. 7. (Concluded)

The suspended sediment concentrations (fig. 7b) show deposition near slack water and resuspension during the strength of bottom currents with a very marked difference between the concentrations and durations during flood and ebb. The maximum concentrations are lower than those at sta 130+500. The sensitivity of the bed surface to resuspension by small increases in current velocity is shown by the double peak in the suspended sediment concentration during ebb that resulted from the slight double maximum in 1-ft ebb currents. The reduced bottom currents caused by the channel widening reduce the competence of the flood currents for transporting sediment through this area by reducing both the the amount resuspended and the velocity of transport.

The salinities (fig. 7c) show that sta 125+500 is in the mixing zone, and that the salinities are everywhere adequate to cause cohesion of suspended clay particles.

b. Suspended sediments

TIME OF MEASUREMENT

17 18 **9/24/68**

Fig. 8. Currents, suspended sediments, and salinities at sta 109+667 during a spring tide (Continued)

³ 9/25/6**8**

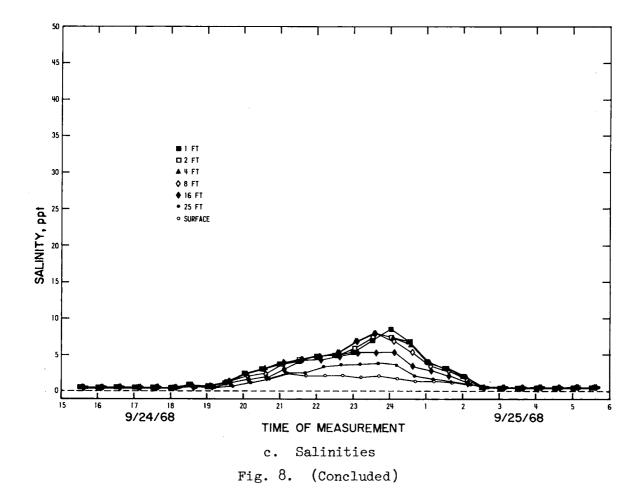
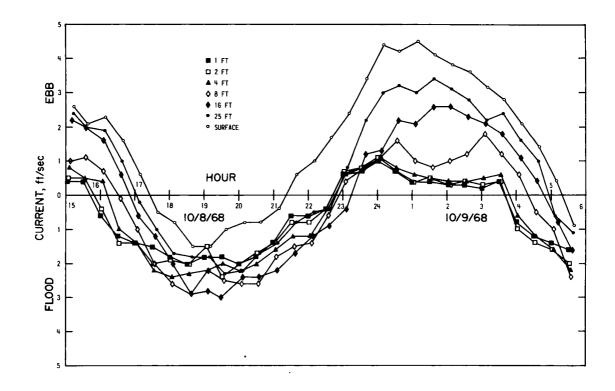


Fig. 8 presents data from the measurements at sta 109+667, located upstream from the shoaling area. The current data (fig. 8a) show less ebb predominance at the surface but higher currents at the bed than those observed at sta 125+500. These higher currents result from the reduced

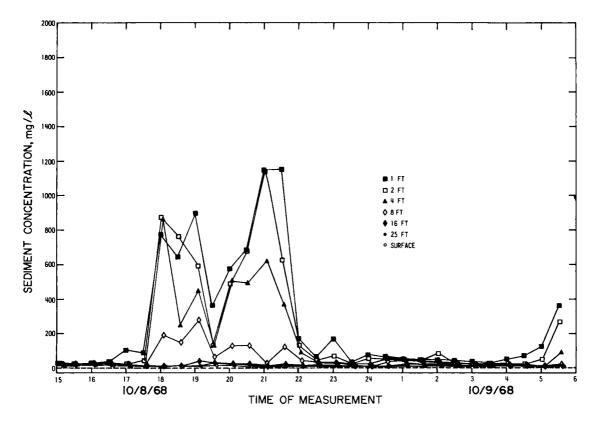
observed at sta 125+500. These higher currents result f channel width.

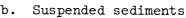
The suspended sediment concentrations (fig. 8b) show suspension during ebb and flood as at the other stations, with a smaller difference in the durations and concentrations. The maximum concentrations during flood at any level at sta 109+667 are lower than those observed at sta 125+500, however. Since the currents are greater, and would scour the bed to greater depths if easily erodible sediment were there, the reduced concentration must be due to the limited amount of material to be suspended. The material entering the study region at sta 130+500 was either deposited in the widened area where the transporting capacity is


reduced or has mixed with the overlying water and was carried seaward. The absence of shoals at sta 109+667 supports this interpretation.

The suspended material settled rapidly at sta 109+667 when the currents diminished, indicating that the material was aggregated.

The salinities presented in fig. 8c show that sta 109+667 was near the average position of the upstream limit of the mixing zone during spring tide at the freshwater flow of 6600 cfs.


Measurements at Mean Tide. The data from the measurements made under mean tide conditions are presented in figs. 9, 10, and 11 for sta 130+500, 125+500, and 109+667, respectively. These figures show that the currents, suspended solids concentrations, and salinities are similar to those that prevailed during the spring tide measurements. Several important differences are worth noting, however.


The bottom currents at sta 130+500, presented in fig. 9, show a

Currents, suspended sediments, and salinities at Fig. 9. sta 130+500 during a mean tide (Continued)

Currents

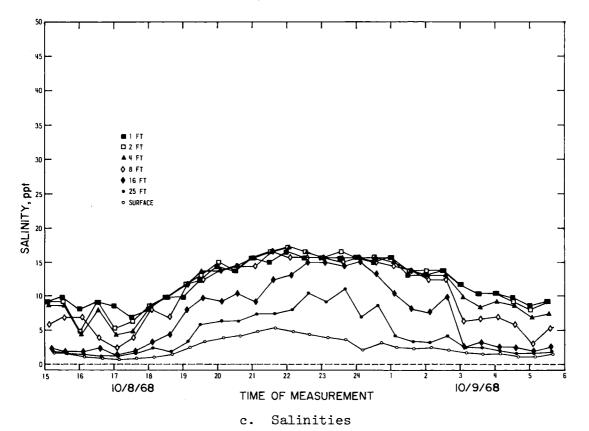


Fig. 9. (Concluded)

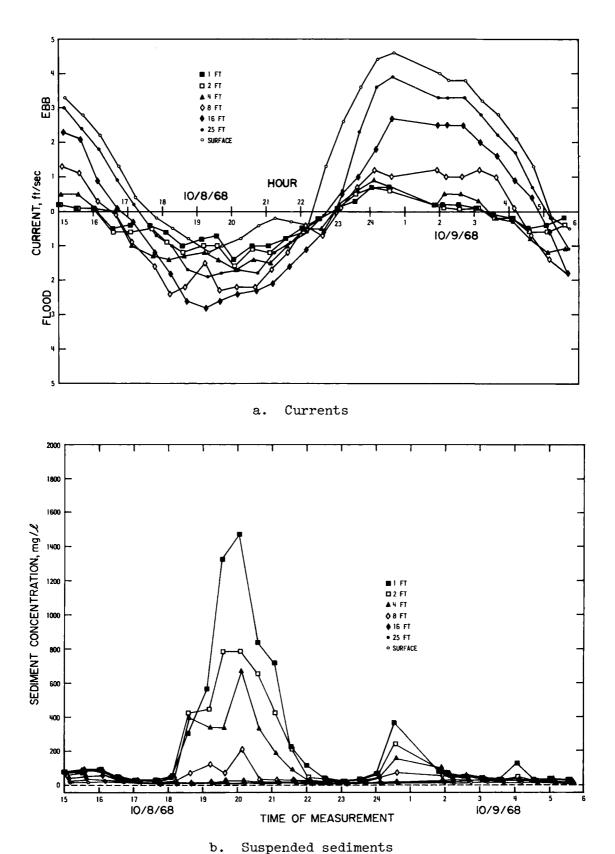
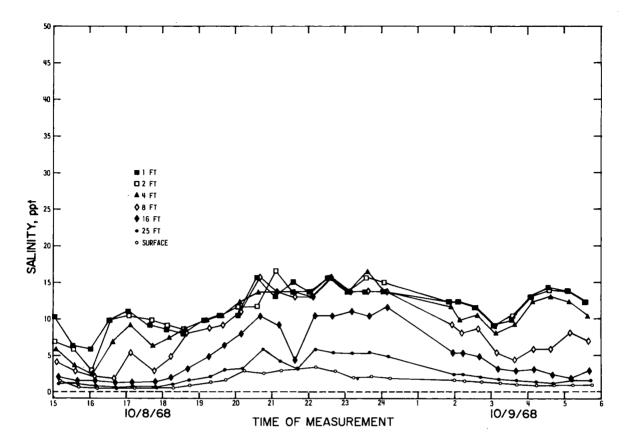



Fig. 10. Currents, suspended sediments, and salinities at sta 125+500 during a mean tide (Continued)

c. Salinities
Fig. 10. (Concluded)

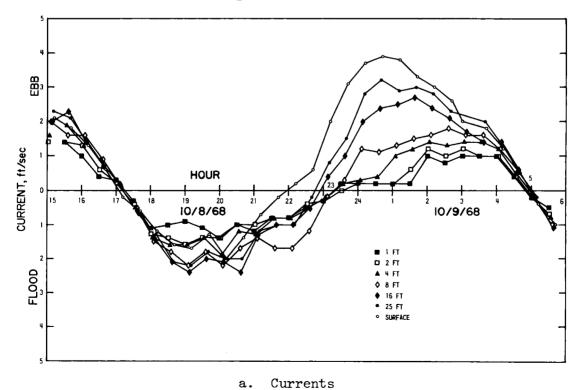
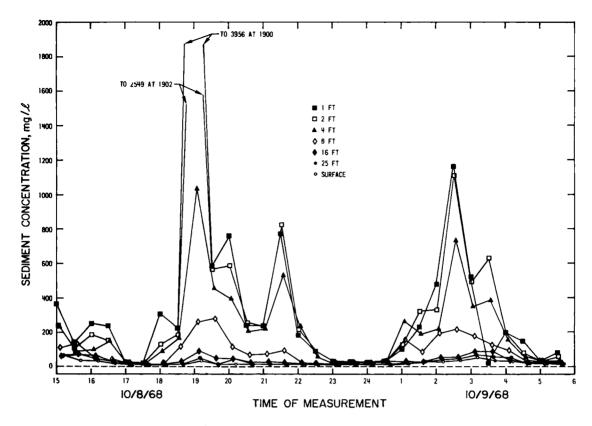
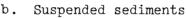




Fig. 11. Currents, suspended sediments, and salinities at sta 109+667 during a mean tide (Continued)

c. Salinities

Fig. 11. (Concluded)

more marked flood predominance, that is, the durations of flood flows are longer and the currents during flood are much greater than those during ebb, and the ebb currents up to 4 ft above the bed are 1 fps or less.

The suspended sediment concentration curves show that almost no sediment was suspended during ebb flows, whereas significant amounts of sediment were suspended and transported during flood flows near the bed. Almost complete rectification of sediment transportation in the upstream direction was facilitated by the bias in near-bed currents and by the shear strength of the cohesive bed.

The salinities at sta 130+500, presented in fig. 9c, were slightly greater near the bed and lower near the water surface during mean tide than during spring tide.

The data from sta 125+500 in fig. 10 also show, in comparison with those obtained at this station during spring tide and presented in fig. 7, stronger flood bias in near-bed currents, lower suspended sediment concentrations, greater differences between the suspended sediment concentrations during flood and ebb, and generally higher salinities near the bed.

The data from sta 109+667 show, when compared with the data in fig. 8, slower currents, lower suspended sediment concentrations, and higher bottom salinities over a greater portion of the tidal cycle.

The lower suspended sediment concentrations at sta 130+500 and 125+500 observed during mean tide with slightly higher near-bed currents, compared with spring tide observations, indicate that the supply of sediment from downstream was limited. Possibly the lower currents associated with the reduced tidal range or the occurrences of an east wind during the spring tide and a northwest wind during mean tide conditions altered the suspension of sediment in the shallow areas.

Measurements at Neap Tide. The data obtained from the field measurements made during a neap tide are presented in figs. 12, 13, and 14. These figures show that flood currents were predominant near the bed under this condition at all three stations. They also show that sediments were suspended during the higher bottom currents and settled to remain deposited for long periods near times of slack water, with marked

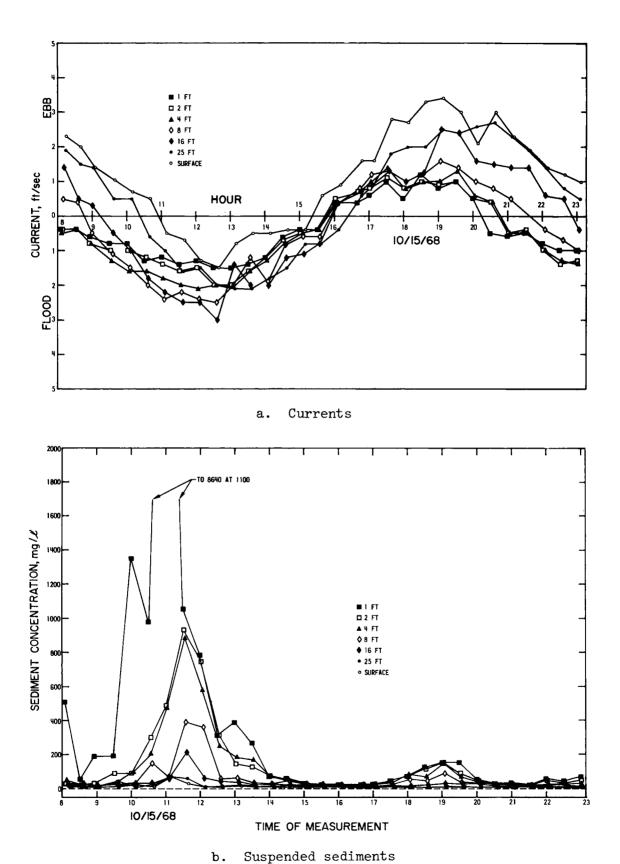
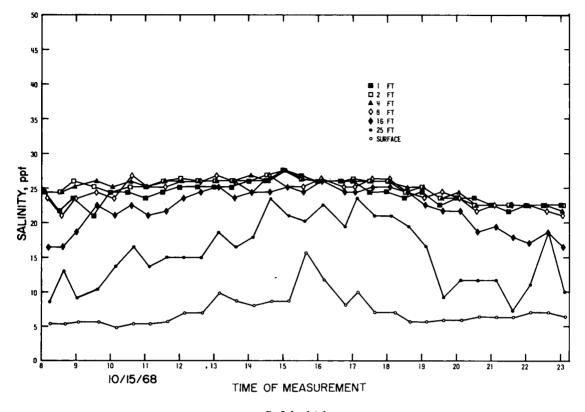
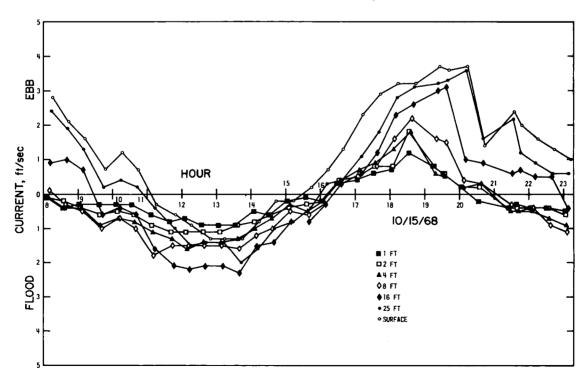
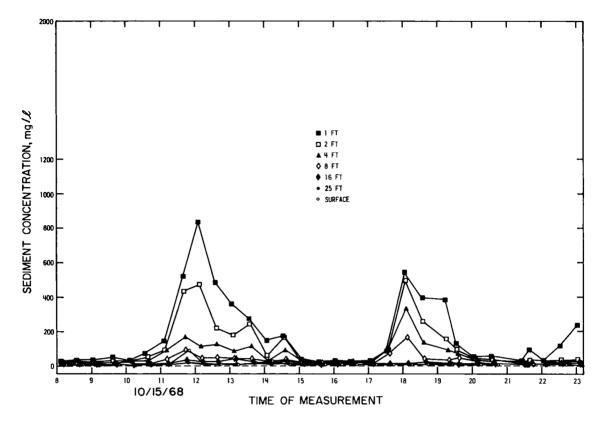




Fig. 12. Currents, suspended sediments, and salinities at sta 130+500 during a neap tide (Continued)

c. Salinities


Fig. 12. (Concluded)

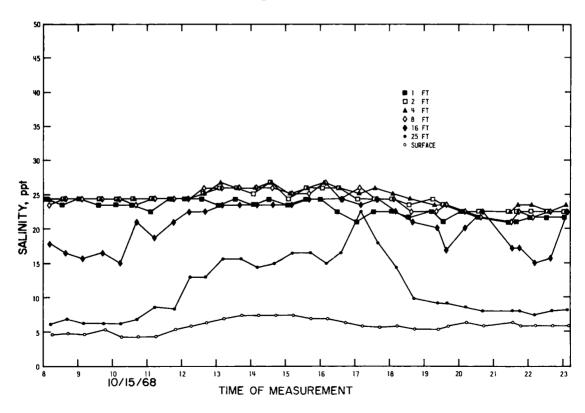
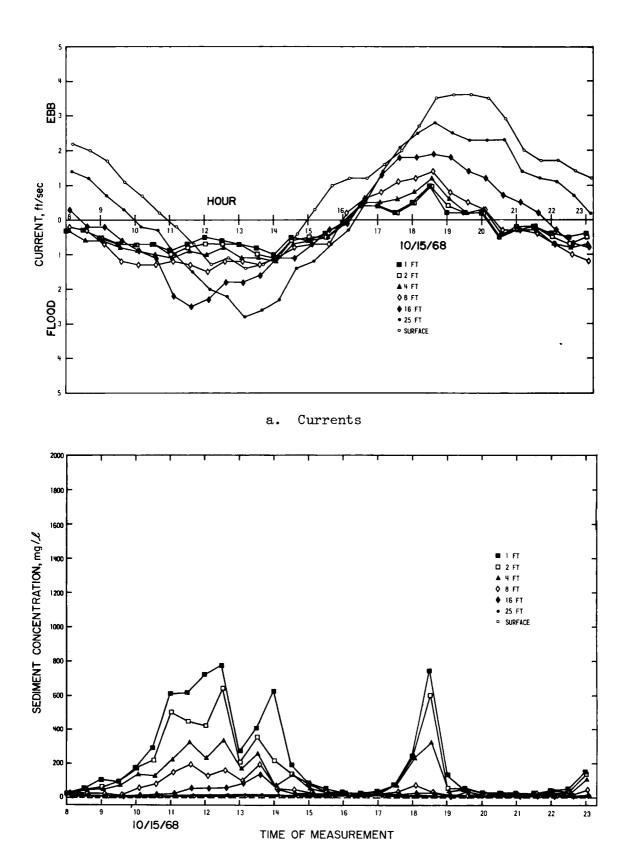

a. Currents

Fig. 13. Currents, suspended sediments, and salinities at sta 125+500 during a neap tide (Continued)

Digitized by Google


b. Suspended sediments

c. Salinities

Fig. 13. (Concluded)

b. Suspended sediments
 . 14. Currents, suspended sediments, and salinit

Fig. 14. Currents, suspended sediments, and salinities at sta 109+667 during a neap tide (Continued)

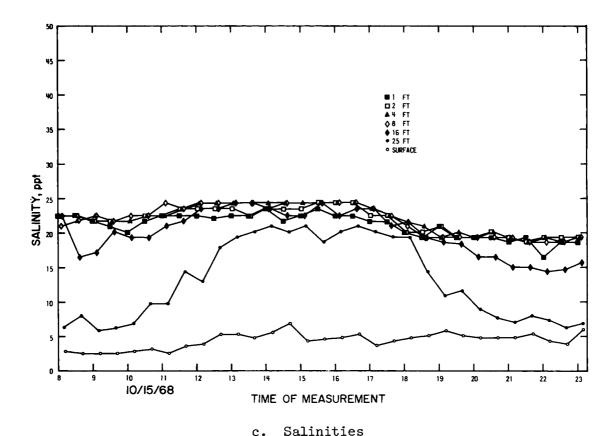


Fig. 14. (Concluded)

rectification or net transport upstream at all three stations. The suspended sediment concentrations near the bed were generally lower than those observed during the mean tide observations. Bottom salinities were much higher and showed less variation during the tidal cycle than did the salinities observed during the tides of greater amplitude. Overview

The data presented in figs. 6 to 14 show that under the hydraulic and salinity conditions prevailing during tidal ranges from 8.6 to 5.4 ft, and with a nearly constant freshwater outflow around 7000 cfs, flocculation processes (aggregation and cohesion) determine the mode of sediment transport in the study area. In every case, the suspended sediment concentration in the 8 ft or so of water immediately above the bed fell rapidly to low values as the tidal currents near the bed approached slack. The fine particles found to comprise the shoal (more than half

less than 2 microns diameter) would not have settled in so short a time if they were not aggregated to form clumps of appreciable size.

As the material at higher elevations above the bed settles, it contributes to the concentration of the suspension measured at lower elevations. When the suspended sediment figures are examined for evidence of settling velocity, decreases of concentration with both time and depth should be considered. For example, the concentration at 4 ft above the bed at 1830 in fig. 14b was sharply reduced at 1900. It is more significant that the concentrations at 2 ft and at 1 ft are lower at 1900 than that at 4 ft at 1830. Most of the material at 4 ft settled through the 2-ft level and much of it settled through the 1-ft level in half an hour; and it settled against the turbulent fluctuations and concentration gradient generated by the slow current shown in fig. 14a. A 2-micron clay particle settles in still water approximately 1 ft in 6 hours.

The suspended sediment concentration at 1 ft above the bed remained close to zero after slack until the near-bed current, therefore the shear on the bed, was sufficient to resuspend the deposit, indicating that the bed was cohesive. The bed surface may be regarded as an aggregation of cohesive aggregates. The shear strength of the bed increases rapidly with depth, however, because of consolidation from the increasing weight of the skeleton of particles with depth. The shear stress on the bed increases approximately with the square of the near-bed current, so that when the currents are sufficient to suspend deposited sediment, even slightly faster currents during flood than during ebb will result in suspension of more sediment during flood and will cause the upstream transportation shown. The suspended material will retain much of the aggregation it had on settling and will settle again at the next opportunity.

The transportation process shown requires for its initiation suspended aggregates of appreciable size. The relevant questions are:

- <u>a.</u> How and where did the disperse streamborne particles form aggregates?
- <u>b.</u> Can knowledge of the flocculation processes be utilized to control shoaling and enhance water use?

The following three chapters are directed toward these questions.

IV. DISCUSSION

Flocculation Processes

Flocculation of suspended sediment particles requires two processes. The suspended particles must collide with one another repeatedly, and the colliding particles must cohere. Waterborne clay mineral particles are mutually cohesive when either the suspending water is almost devoid of salts or when the cation concentration in the water is sufficient to overcome the mutual repulsion of the clouds of cations attracted by the negative mineral faces.

Typical estuarine sediments are significantly cohesive when the concentration of sea salts exceeds 1 g/ ℓ . Much of an estuary has salt concentrations in excess of this value, and once the river waters have mixed with sea water to this extent the particles are cohesive. Aggregates of significant size will not form at salinities above 1 g/ ℓ , however, unless conditions exist that cause repeated collisions of suspended particles.

There are three mechanisms of interparticle collision. The most commonly mentioned mechanism is collision due to the jostling of small particles by the thermal motions of the suspending medium. This particle motion, called Brownian motion after its first observer, is easily seen with a microscope. The frequency of collision on one particle by others, I, was described by Whitlaw-Gray and others, ¹³ as

$$I = \frac{\mu_k Tn}{3\mu} \tag{2}$$

where

k = Boltzman's constant

T = absolute temperature

n = number of suspended particles per cubic centimeter

 μ = viscosity of the water

All particles are considered to be the same size in equation 2 for simplicity. The number of collisions on a particle per second at the prevailing temperature is

$$I = 6 \times 10^{-12} n$$
 (2a)

which shows that the number of particles per cubic centimeter must be large for this mechanism to prevail. If the average particle is 0.25 micron diameter, for example, the time between collisions for dispersed particles at a concentration of 200 mg/ ℓ is 16 sec.

The second mechanism of interparticle collision is that due to internal shearing, or local velocity gradients in the fluid. Particles slightly displaced in the fluid along a velocity gradient will have relative motion such that the particle in the faster moving fluid will catch up to the slower particle. Collision will occur if the paths of the particle centers are displaced less than the sum of their radii. This sum is called the "collision radius," R_{ij} , between i-size and j-size particles. The frequency of collisions on a j-size particle, J, by this mechanism was derived by Smulschowski land is

$$J_{j} = \frac{1}{3} n_{i} R_{ij}^{3} G \tag{3}$$

where G is the <u>local</u> velocity gradient. The significant feature of this relation is the strong effect of the collision radius on the frequency of collision. The collision radius for a large aggregate and an individual clay particle is larger than that between two clay particles, with the result that in a shearing suspension containing large numbers of small particles so that n is large, together with relatively few large aggregates, the large aggregates will appear to gather the primary particles and grow even larger.

The third mechanism of interparticle collision is the collision resulting from differential settling velocities of particles. Larger particles settling through a suspension of smaller particles collide with the smaller particles if the size difference is not too great. The collision on a settling particle per second, H, due to this mechanism is

$$H = \pi E R_{ij}^2 Vn$$
 (4)

where

E = capture coefficient

V = relative velocity between particles

Fuchs 13 shows that the capture coefficient probably falls rapidly as the ratio of the particle radii diminishes from one but is enhanced when the Reynolds number, based on the radius of the smaller particle, exceeds one because of the wake produced by the leading particle. The important features of this process are the dependencies on R and n. Here again the large particles gather smaller ones. This mechanism contributes to the observed rapid clarification of water at slack.

All three of these mechanisms operate in an estuary where the water is seldom still. Differential settling is probably important only when the aggregation is already far advanced, and during near slack flows when the local shearing rate is low. The relative effectiveness of internal shearing and Brownian motion can be seen from the ratio

$$\frac{J}{T} = \frac{\mu R_{ij}^3 G}{kT}$$

When $G=1~{\rm sec}^{-1}$, and the temperature is that at Savannah Harbor, this ratio is one for $R_{ij}=0.77~{\rm micron}$. Even at this very low shearing rate and for clay-size particles, internal shearing is as important as Brownian motion. As aggregates become larger, or as the shearing rate increases, internal shearing rapidly becomes the dominant mechanism for collision. Brownian motion can contribute during the initial stages of aggregation of riverborne particles when the number concentration is large, but the formation of large aggregates in an estuary is very predominantly due to internal shearing.

Internal shearing also affects the structure of suspended aggregates and thereby their density and shear strength. It was found during a rheological study li that aggregate structures could be described as follows. Primary mineral particles added one at a time to form a uniform aggregation are designated a "primary particle aggregate" or a zero-order aggregate. When sufficient numbers of primary particle aggregates exist to collide with one another, aggregations of primary aggregates form.

These are designated first-order aggregates. The first-order aggregates will include interaggregate pores in addition to the intermineral particle pores of the primary particle aggregates and will therefore be less dense. Shear stresses will be concentrated at the interaggregate contacts so that the apparent shear strength of the first-order aggregates will also be less than that of the zero-order aggregates.

If sufficient numbers of first-order aggregates exist to facilitate their aggregation with each other, second-order aggregates are formed that have lower densities and shear strengths than did the first-order aggregates, and so on. First-, second-, and third-order aggregates were easily observed in a concentric cylinder viscometer containing concentrated suspensions of estuarial sediments. Densities and shear strengths for each order were calculated.

Aggregates suspended in a shearing fluid rotate; and if the forces causing rotation exceed the shear strength of the contact area formed on collision, a bond will not be formed. If the stresses on an aggregate already formed exceed its apparent shear strength, the aggregate will be rendered until a lower order having the necessary strength remains. An aggregate of a given order can exist to some maximum shearing rate beyond which only Tower orders are resistant. Third-order aggregates typically withstood shearing rates up to 3 sec⁻¹, second order up to 11 sec⁻¹, first order up to 40 sec⁻¹, and zero order well over 100 sec⁻¹. Higher shearing rates favor both increased collision frequencies and denser aggregates.

A freshly deposited cohesive bed surface is one order of aggregation greater than that of the depositing aggregates, so that it is weaker. When such a bed is eroded, the weaker bonds (i.e. those formed when aggregates contact the bed) would break first, resuspending aggregates having the same order of aggregation as those deposited, provided they could exist in the flows.

Suspended aggregates are free to rotate, so the stress on their surface is less than that on a fixed bed experiencing the same velocity gradient. Because of their freedom to rotate and because the shearing rate in a channel is greatest near the bed, aggregates can be transported

long distances intact and even grow above beds experiencing shear stresses that cause scour.

Aggregation by Brownian motion or by differential settling in the absence of internal shearing requires only that the particles cohere under the very small surface stresses imposed by settling through the water. Such aggregates would be expected to be weak, to be ragged in shape, and to have very low density compared with aggregates formed in shear flow. The shearing rate and the length of time the aggregates are exposed to a particular shearing rate are major factors in the rate of formation and the character of the resulting aggregates, including the shoal surface. Internal Shearing at Savannah Harbor

Internal shearing in partially mixed flows is most evident in velocity profiles. While steady flow in a tidal estuary exists fleetingly, if at all, it is useful to examine the current profiles during the strengths

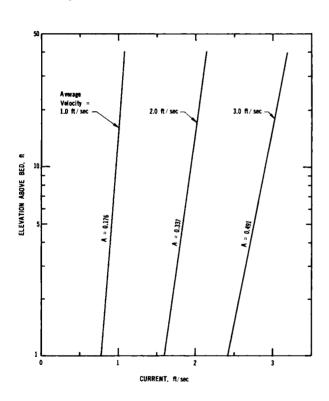


Fig. 15. Current profiles in a 40-ft channel with uniformly dense fluid and hard wall

of flood and ebb and to seek
those whose profiles are determined by bottom friction. Under
these conditions the steady-flow
descriptions can assist interpretation. The straight, uniform
channel locations for the current
measurements were sought to obtain such profiles.

In order to provide perspective to the data, calculated current profiles that would be expected for uniform steady flow of homogeneous clear water in a 40-ft-deep channel were calculated and plotted as shown in fig. 15. These curves were calculated for several average velocities from the relation

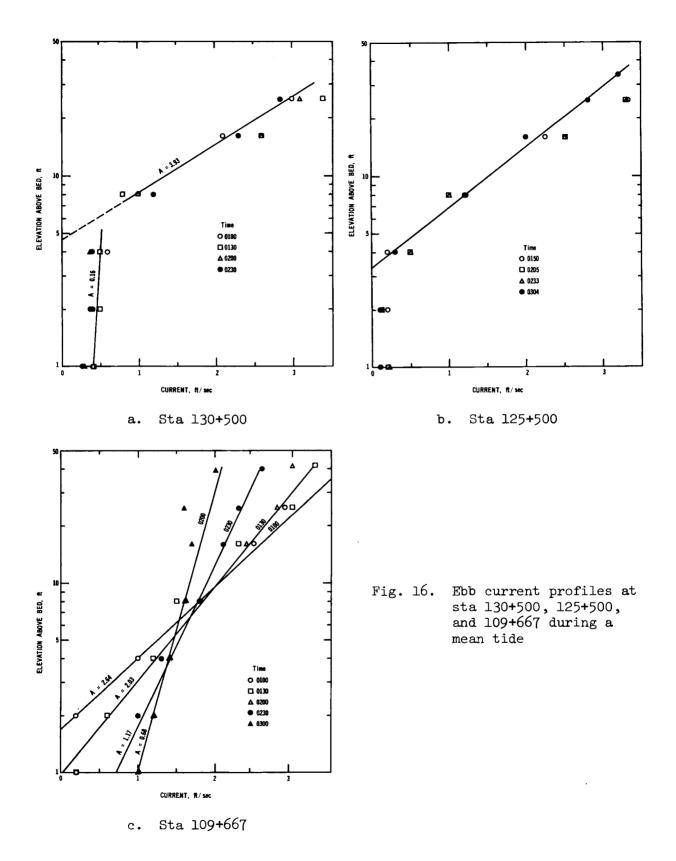
$$u = \frac{2.30u_*}{k} \log 9.04 \frac{zu_*}{v}$$
 (5)

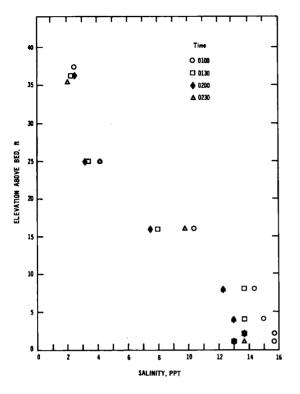
where

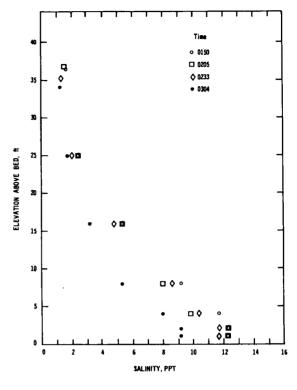
u = horizontal temporal mean current at z elevation above the
 bed

 $u_{\underline{u}}$ = friction velocity

k = Karman's constant, taken to be 0.4 for fig. 15

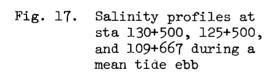

 $v = kinematic viscosity, 0.930 \times 10^{-5}$

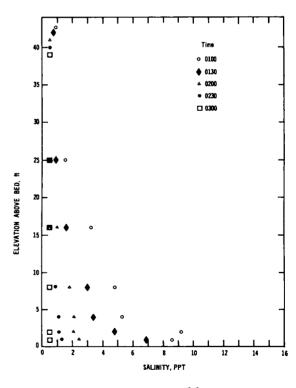

The slopes of the curves, $A = 2.30u_{\pm}/k$, are noted on each curve.


Velocity profiles measured during ebb flows under mean tide conditions are presented in fig. 16. Figs. 16a and 16b show two apparently logarithmic profiles: a nearly normal low-velocity profile from the bed to about 6 ft at sta 130+500 and from the bed to about 4 ft at sta 125+500, and much flatter but approximately logarithmic profiles over the remaining water depth to the surface. Fig. 16c shows a similar profile near the beginning of ebb, with the change in slope at about 2 ft. The slope steadily changed thereafter toward that for uniformly dense fluid. These peculiar profiles result from variations in water densities and the combined influences of tidal and freshwater flows.

The salinities observed during these measurements are plotted in fig. 17. Figs. 17a and 17b show that the lower portions of the salinity profile, corresponding to the low velocity, normal profile portions of figs. 16a and 16b, have almost uniform salinity. The salinity decreases to low values with increasing elevation throughout the remainder of the water above this portion. The continuing decrease in salinity with increase in elevation, and therefore continuing decrease in water density, inhibits vertical velocity fluctuations and thereby reduces vertical momentum transfer. The result is that instead of a concentration of most of the internal shearing near the bed, as it is in typical flows, it is distributed throughout the upper 30 ft or so of the channel.

The salinity profiles for sta 109+667, presented in fig. 17c, show a similar profile at 0100, and diminishing salinity at later times until 0300, when the salinity was uniformly that of the freshwater inflow. The change in current profiles shown in fig. 16c is consistent with the increasing uniformity of the density throughout the depth.





a. Sta 130+500

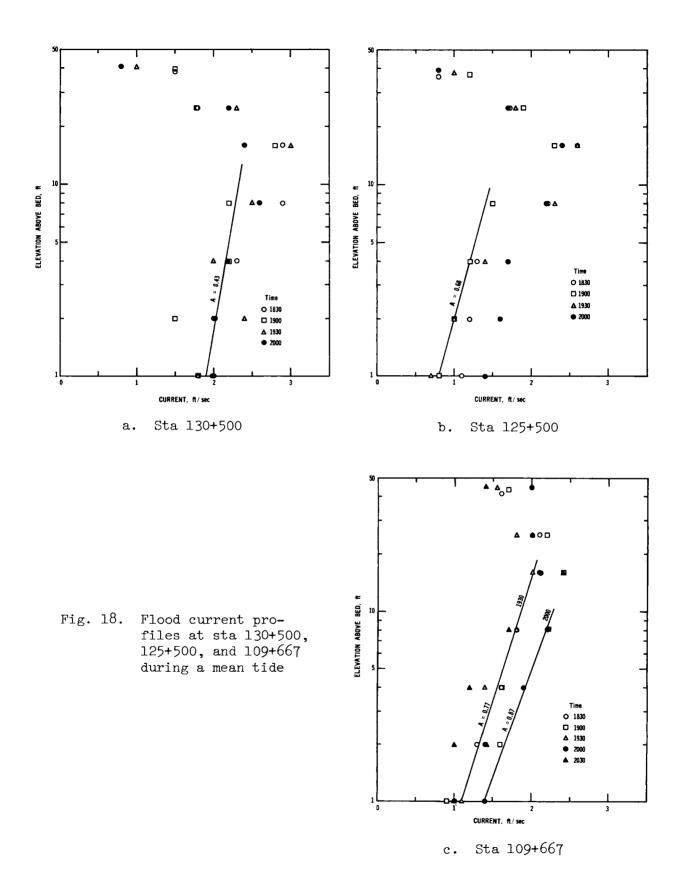
b. Sta 125+500

c. Sta 109+667

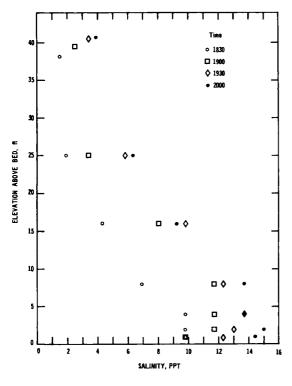
The salinities near the bed are shown in fig. 17 to diminish with distance upstream, indicating that the intruding salt water is steadily diluted by the overriding fresh water. At the same time, the salinities in the upper region increase with distance downstream, which indicates vertical mixing of the two layers. The nearly uniform densities near the bed indicate that flow in that region is well mixed, whereas the decreasing salinities above that region indicate slow vertical propagation of saline water and dilution by the greater flows near the surface.

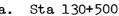
The stabilization of flow by the density gradient is characterized by the ratio of inertial forces to gravity stabilizing forces resulting from the salinity gradient. This ratio is the Richardson number

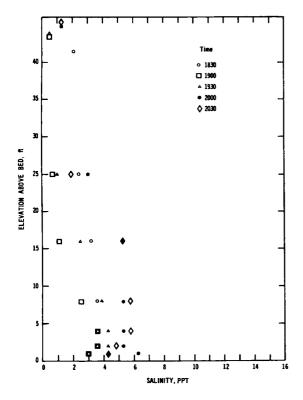
$$R_{i} = \frac{\left(\frac{du}{dz}\right)^{2}}{\frac{g}{o}\frac{do}{dz}}$$
 (6)

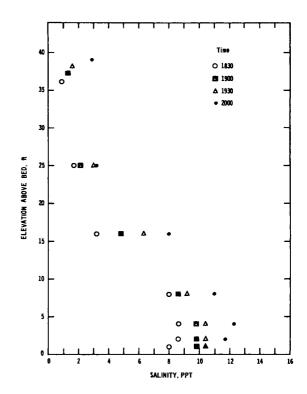

When R_i is less than 1, the flow is laminar. R_i was calculated from the data in figs. 16a and 17a for the flow 10 ft above the bed to be 2, indicating that momentum transfer upward is small.

Current profiles measured during the strength of flood flows are presented in fig. 18. This figure also shows the effects of freshwater outflow near the surface, which opposes flood tidal flow. The slopes of the curves are more than twice those for comparable flows of uniformly dense water, as shown by comparison with the curves in fig. 15.


The salinity profiles during the strength of flood are presented in fig. 19, and show that the salinity gradients persist through the water above 4 ft and that the salinities increase almost uniformly as more saline waters move back upstream. Figs. 19a and 19b show that saline water intrusion is most rapid 2 to 4 ft above the bed during flood.


An estimate of the internal shearing in the flows where bed friction determines the profile can be obtained from the observation that the average internal shearing in a fluid, G, is


$$G = \sqrt{\frac{P}{\mu}} = \sqrt{\frac{\tau d\bar{u}}{dz}}$$
 (7)


Digitized by Google

c. Sta 109+667

b. Sta 125+500

Fig. 19. Salinity profiles at sta 130+500, 125+500, and 109+667 during a mean tide flood

where

P = energy dissipated per unit volume of fluid

 $\mu = viscosity$

 τ = shear at any elevation z

τ may be estimated as

$$\tau = \rho u_*^2 \left(1 - \frac{z}{d} \right) \tag{8}$$

where ρu_{*}^{2} is the shear on the bed, and d is the water depth.

$$\frac{d\bar{u}}{dz} = \frac{u_*}{kz} \tag{9}$$

as conventionally described. Combining equations 7, 8, and 9 leads to

$$G = u_* \left(\frac{u_*}{vk}\right)^{1/2} \left(\frac{1}{z} - \frac{1}{d}\right)^{1/2}$$
 (10)

The slopes of the logarithmic curves are $A = 2.30u_*/k$. Substitution in equation 10 leads to

$$G = \frac{kA}{2.30} \left(\frac{A}{2.30\nu}\right)^{1/2} \times \left(\frac{1}{z} - \frac{1}{d}\right)^{1/2}$$
 (11)

which is more useful for evaluating the velocity profiles.

A plot of the internal shearing in flows with logarithmic profiles calculated from equation 11, using k = 0.2, is presented in fig. 20. The shearing rates in uniformly dense clear water flowing at 3 fps with k = 0.4 would be close to those shown for A = 1 in fig. 20. It is evident from the

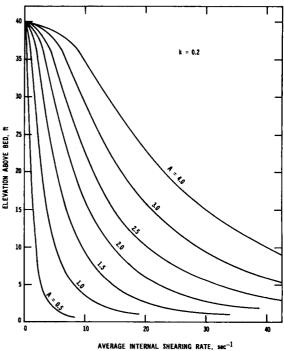


Fig. 20. Average local shearing rates in a 40-ft channel

values of A shown on the current profiles that unusual internal shearing prevails in the study area and that it is most pronounced during ebb flows in the large upper portion of the profile with a salinity gradient.

The calculation above is only an estimate even when the profile is logarithmic because there is no way to determine Karman's constant, k . Measurements of velocity profiles in a flume by Einstein and Ning Chien. 15 using various sizes of sand, showed that at high concentrations of sand conditions near the bed were altered so that k ranged downward to below Ippen 16 indicated that increases in the effective viscosity near the bed resulting from suspended particles would reduce k . In addition to the effects of aggregate volumes in the viscous layer and the density gradient due to both salinity and suspended sediment concentration gradients, the cohesive bed undoubtedly deforms in response to pressure fluctuations, giving rise to the probability that the bed itself damps the formation of eddies. The lower value of k appears more appropriate than the 0.4 for the conditions that prevail in the study region.

Bed Shear Stress

Comparison of the lower portions of the current profiles at sta 130+500 and 125+500 during ebb (figs. 16a and 16b) with those during flood (figs. 18a and 18b) clearly shows the difference in near-bed currents responsible for the increased scour of the bed during flood. Lines drawn on figs. 16a and 18a, taken as representative near-bed profiles, have slopes of A = 0.16 for ebb and A = 0.43 for flood, which compare with the uniform density profiles in fig. 15. k can be taken as 0.4, $A = 2.30u_*/k$, and $\tau_0 = \rho u_*^2$, where τ_0 is the shear on the bed, and ρ is the water density. These slopes yield bed shear stresses of 0.7 dynes/cm² on ebb and 5 dynes/cm² on flood. The aggregate shear strengths of Brunswick Harbor sediment, which has cation exchange capacity of 30 milliequivalents/100 g compared with 36 milliequivalents/100 g for Savannah Harbor shoal material and is probably slightly weaker, 11 are as follows:

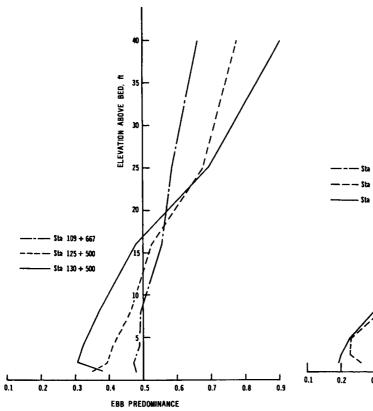
[†] Appendix C.

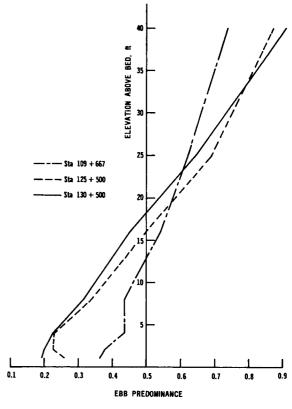
	Brunswick	Harbor Aggregate	Properties	
Order	of	Shear Strengt	h I	Density†
Aggregat	ion	dynes/cm ²		g/cc
0		34		1.164
1		4.1		1.090
2		1.2		1.067
3		0.62		1.056

[†] Density of interstitial water, 1.025 g/cc.

Beds composed of first-, second-, and third-order aggregates would be scoured by the flood currents, whereas only beds composed of third-order aggregates would be resuspended by the ebb near-bed currents. The magnitude of bed shear stress and its time of occurrence, as well as relative distance of water travel shown by predominance calculations, are important factors determining net transportation of estuarial sediments.

Predominance Curves


Ebb current predominances were determined by planimeter from the plots in figs. 6-14 as


$$\frac{\int_{\text{Ebb}} \text{udt}}{\left(\int_{\text{Ebb}} \text{udt} + \int_{\text{Flood}} \text{udt}\right)}$$

where t is time. These ebb predominances are plotted for each tide condition in fig. 21. The curves from measurements made during spring tide, presented in fig. 21a, show that sta 109+667 was close to the average position of the upstream limit of saline water intrusion, and that bottom currents at the two downstream stations were predominantly in the direction of flood.

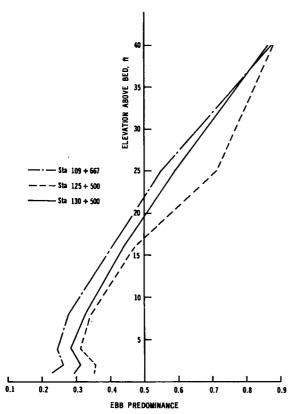
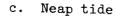

The plot of the mean tide data presented in fig. 21b is similar to that in fig. 21a, except that sta 109+667 is farther downstream from the null point and the intercepts on the 0.5 predominance line are closer together, suggesting that with a reduced tidal amplitude the mixing zone is more nearly horizontal.

Fig. 21c presents the predominance curves from the measurements



a. Spring tide

b. Mean tide

Fig. 21. Ebb predominance in the study area during a spring tide, mean tide, and neap tide

made during the least tidal range. The curves from sta 130+500 and 125+500 are similar to the curves for those stations during mean tide conditions. The curve for sta 109+667, however, shows greater bottom predominance than either downstream station. Fig. 14 shows that there was a very prolonged period of flood near the bed at sta 109+667. No explanation for this peculiar bottom current predominance during neap tide is evident from the data.

The predominance curves show that there is a net upstream movement of water near the bed in the study area which, when combined with the greater scour of deposited material during flood than during ebb, provides net upstream movement of sediment in the lower portions of the flow. The spring tide curves showed also that sta 109+667 was close to the predominance null point under that tide condition.

Floc Settling Velocities

It is already evident from the suspended sediment concentration curves presented in figs. 6-14 that the suspended particles have much greater settling velocities than the individual clay particles which comprise the shoal. An application of steady-state suspended sediment distribution relations to flows showing logarithmic velocity profiles yields further information on floc settling velocities.

The concentration, $C_{_{\rm Z}}$, of uniform suspended particles in an open channel at elevation z above the bed, relative to the concentration at, say, 1 ft, $C_{_{\rm A}}$, can be found from diffusion theory to be

$$\frac{C_z}{C_a} = \left(\frac{a}{d-a}\right)^{\zeta} \left(\frac{d-z}{z}\right)^{\zeta} \tag{12}$$

where

a = reference elevation

d = water depth

 $\zeta = w/ku_{x}$

w = settling velocity of the suspended particles

Flocs suspended in open channel flow under steady conditions would settle to the zone of highest shearing close to the bed where they would be rendered if their structure were too high an order, and diffused upward, would grow and settle again. Repeated experience would tend to make the aggregates similar, and equation 12 would apply.

Suspended sediment concentrations measured during periods when the velocity profiles were logarithmic were plotted so that distributions described by equation 12 would fit a straight line, as shown in fig. 22.

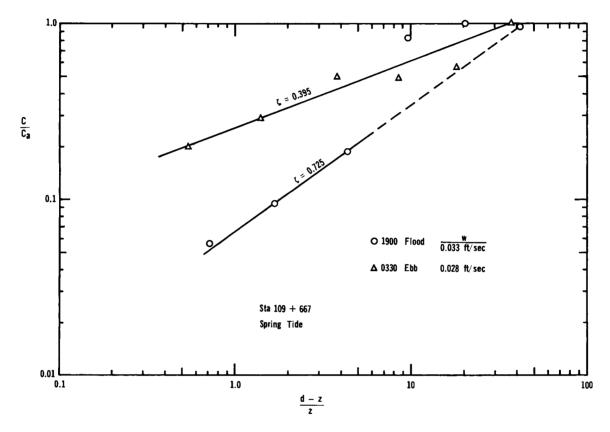


Fig. 22. Plot to find settling velocities of flocs

The slopes of the best straight-line fit were then used to find the settling from the slope of the velocity profile, A , and values of k of 0.4 by means of the relations $u_{\star} = kA/2.30$, and $w = ku_{\star}\zeta$, so that $w = \zeta Ak^2/2.30$. Some of the plots had better fits to straight lines than that in fig. 22, but there were fewer profiles than anticipated that would meet both the criteria of logarithmic velocity profiles and log-log plots that fit equation 12.

The settling velocities calculated from the best fits under each tide condition are summarized below. These few settling velocities appear to fall in groups. Five fall between 0.012 and 0.017, averaging

0.015 fps; seven fall between 0.028 and 0.047, averaging 0.036 fps; and four fall between 0.084 and 0.151, averaging 0.11 fps. Brunswick Harbor first-order aggregates have a density of 1.090 g/cc when suspended in water having a density of 1.025 g/cc. The Stokes settling diameters calculated from these densities are 1.0, 0.6, and 0.4 mm for settling velocities of 0.11, 0.037, and 0.015 fps, respectively. These aggregates should be visible to the naked eye. The diameters would have been half those calculated above if k = 0.2 had been used to calculate the settling velocities.

	Aggregate So	ettling Velocit	ies, fps
Station	Spring Tide	Mean Tide	Neap Tide
109+667 Ebb Flood	0.028 0.033	0.038 	0.030 0.012
125+500 Ebb Flood	0.014, 0.013 0.033	0.091 0.017	0.084 0.047
130+500 Ebb Flood	0.151 0.098	 	0.016 0.040

Note: Aggregate settling velocities were calculated from equation 12 using k = 0.4.

An 0.6-mm first-order aggregate contains about half a million clay particles. Even though there is a large amount of scatter in these data, it can be concluded that large aggregates have formed.

Suspended Sediment Concentration

All three processes that cause collision of suspended mineral particles have rates of collision directly proportional to the suspended sediment concentration by number. The concentration of suspended particles by weight in the study area ranged from tens of milligrams per liter to grams per liter levels. A clay mineral particle weighs about 10^{-11} to 10^{-12} g, and particles dispersed in river water at a concentration of 100 mg/l, for example, would have a number concentration from 10^7 to 10^8 particles per cubic centimeter. Collisions by Brownian motion would occur initially at $I = 6 \times 10^{-5}$ to 6×10^{-4}

per second, or one collision every 4.5 to 0.45 hr for this range in numbers. An aggregate containing half a million clay particles would not form very rapidly.

If the shearing rate averaged 10 per second, then for R_{i,i} = 2 microns, $J = 10^{-3}$ to 10^{-2} per second, or say at most, one every 100 sec. Such aggregation would still not account for the formation of large aggregates directly from material suspended in river water unless the aggregation took place over a long period of time. Higher concentrations by number, and at least a few large "seed" flocs that would provide large values of R_{i,i}, are required to form aggregates at rates that would account for shoaling where river and ocean waters mix. The feedback mechanism demonstrated by the data presented in figs. 6-14 provides both high concentrations and large collision radii, and the high shearing rates distributed over a large volume in the channel provide extended periods during which the disperse riverborne particles can be gathered by the aggregates returning from downstream. If the returning aggregates were 20 microns in diameter, for example, the collision radius with a dispersed clay particle would be approximately 11 microns, and two collisions per second would occur on each aggregate. Larger aggregates, greater numbers of aggregates, or increased shearing rates would increase the collision frequency.

This chapter presented the factors that determine the rate of aggregation of suspended particles and showed that conditions in the waters of the study region are such that cohesion, frequency of collision, and times for collisions to occur are sufficient for the formation of large aggregates. The settling velocities calculated from the suspended sediment concentration profiles are much greater than those of individual particles that comprise the shoals and show that aggregates are formed from a large number of collisions. These calculated settling velocities are consistent with the rapid clarification of the waters during times near slack that were shown in Chapter III.

The aggregates settle to form the bed surface. The shear strength of the bed surface depends on the shear strength of the cohesive aggregates and their susceptibility to crushing or particle rearrangement

with depth of overburden. The properties of the suspended aggregates, therefore, determine the shears necessary to resuspend thin deposits formed when they settle to the bed.

It can be concluded that at Savannah the settling velocities of the suspended material and the ease of resuspending deposited material, and therefore particulate material transport and accumulation, are determined by flocculation processes.

V. TRANSPORTATION AND SHOALING PROCESSES IN THE STUDY AREA

The field data are combined in this chapter with the concepts provided in the discussion to form a qualitative description of the sediment transportation processes in Savannah Harbor. A schematic diagram summarizing these processes is presented in fig. 23, which represents the freshwater-saltwater mixing zone with dispersed suspended sediment entering in fresh water from the left and loss of suspended sediment to the ocean on the right. Neither the sediment input nor sediment loss is implied to occur at steady rates.

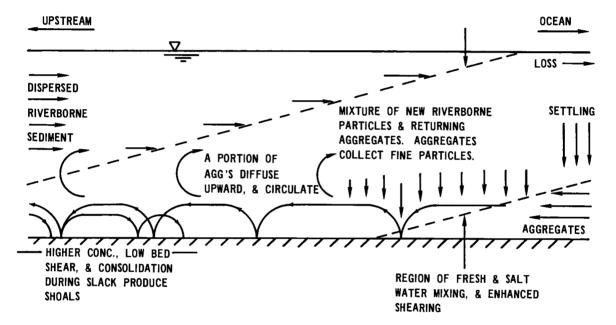


Fig. 23. Transport and shoaling processes in the study area

It is convenient to consider first the aggregated suspended sediment returning upstream with tidal currents shown at the lower right in fig. 23. These sediments originate from shallow areas disturbed by wind-generated waves, from dredge spoil disposal, or from other tributary streams. The erodible deposits in shallow areas accumulate during periods of storm runoff when river turbidity can be observed to extend over these areas, that is when the mixing zone extends over the shallow areas, as well as depositing from more usual flows as will be described subsequently. When suspended aggregates reach portions of the estuary

having a salinity gradient, the upstream predominance of near-bed currents assures their upstream movement as long as bed shear stress is sufficient to keep them suspended.

The aggregates rapidly accumulate on the bed during each time near slack water that the near-bed currents fall to magnitudes that permit deposition. The burden of the particles deposited last on the aggregates near the bottom of a new deposit will cause the collapse of the lower aggregates' structure when the deposit is more than a few centimeters thick, 11(p.77) and the shear strength of the deposit will increase with depth. The depth to which the new deposit scours when the currents increase after slack will then depend on the bed shear stress imposed by the flow. If the currents during both flood and ebb are sufficient to scour all of the new deposit, the net movement will be determined approximately by current predominance. However, if the shear stress during ebb is less than sufficient to suspend all of the newly deposited material, there will be a portion of the material resting on the bed during ebb, which will be resuspended and transported during the predominant flood flows. The net rate of upstream movement will be greatly enhanced. occurrence of this process in Savannah Harbor is shown in figs. 6-14. is important to recognize the effect of the amount of material deposited during slack periods on this process.

Continuing deposition will occur when the bed shear during flood, as well as during ebb, is insufficient to resuspend all of the material deposited during preceding slack periods. The actual shear necessary depends on the amount of material deposited. This situation would occur immediately downstream from the toe of average salinity intrusion in a uniform channel, where bed shear is lowest, unless the material had already been removed from the flow downchannel. The maximum rate of shoaling in Savannah Harbor, however, occurs near sta 125+500, which is well downstream from the toe. Shoaling there results from the markedly reduced bed shear stresses, relative to those upstream or downstream, resulting from the widened channel together with the large amount of material deposited during each near-slack water period.

A large portion of the sediment moving upstream intermittently in

suspension moves right on through the toe of the salinity intrusion, mixes with the fresh water and its suspended sediment load, and is carried seaward up over the saline intrusion in the large portion of the channel volume having a vertical salinity gradient and higher than normal rates of internal shearing.

The salinity profiles show a lower zone with nearly uniform salinity and a vertical gradient toward lower salinities in the zone above. The boundary between these zones is fuzzy but discernible. This boundary moves upstream and downstream with the tides and has a downward slope in the upstream direction. There is a net upward movement of saline water at this upper boundary because, as the fresher and saline waters mix, the salinity and density decrease. There is continuing displacement of the less saline water by more saline water.

A nearly horizontal lens of high concentrations of suspended sediment on the salinity boundary near the mouth of the Mississippi River, which suffers very little disturbance from tides, is evidence of this phenomenon. Those aggregates moving upstream near the bed or formed at the interface whose settling velocities are comparable to the upward currents are held in this zone of upward moving water as are flocs suspended in a sludge-blanket upflow clarifier. Smaller particles moving through this region are often "caught" by the suspended particles, the suspended particles themselves combine, until the settling velocity exceeds the upflow velocity component and the particles fall through the saline zone to deposit.

The observation of flood predominance near the bed is further evidence of net upflow through the upper fuzzy boundary of saline water. This upward current transports preferentially aggregates having low settling velocities and carries them into the zone where appropriate shearing rates, disperse riverborne particles, and considerable time are available for their growth. They are transported seaward in the upper regions.

When these particles are transported into the broader areas of the estuary where bed shears are often low, or if their settling velocity has increased to exceed the upward component of mixing water, these

aggregates settle into the saline region where they are again transported upstream and continue through the cycle.

The processes described herein are rate-dependent processes. rates of aggregation are important relative to the time for aggregation Since material can go through the cycle again and again, probably forming and partially breaking aggregates several times, the available time can be long. The rates that determine whether an estuary with appropriate hydraulic conditions experiences the processes described herein are the relative rates of suspended sediment supply and of sediment loss from the system. When the rate of supply exceeds the rate of loss downstream, say, to the ocean, the concentration in the recycling system will increase until the deposits formed during slack water are thick enough to leave shoal material at the rate sediment is supplied. Sediment brought in by storm flows can deposit in shallow areas when the mixing zone moves down to those areas or when aggregates are transported from the mixing zone to those areas, then can be continually resupplied to the process when resuspended by wind-generated waves. The rate of sediment loss from the system, and hence alleviation of shoaling, can be augmented by disposing of dredge spoil outside the recycling system.

Seaward transport from the system will be enhanced if high concentrations of suspended sediment can be prevented from moving upstream to the extent that the low concentration inhibits aggregation. Every feasible means to minimize the suspended sediment concentration in shoaling areas should be considered.

The recycling processes described herein account for the turbidity maxima observed in estuaries.

VI. METHODS FOR ALLEVIATING SHOALING AT SAVANNAH HARBOR

Extensive field and model studies of Savannah Harbor have already resulted in plans for reducing the cost of maintenance. The methods offered herein are presented to illustrate briefly the application of information obtained during this study.

Keep the Sediment Moving

The importance of bed shear stress to the upstream movement of sediment is evident from the data obtained during this study. shear stresses can be made to equal or exceed those that suspend the sediment material during its transport into the shoaling area, the sediment can be kept in motion and increased loss from the recycling system can be obtained by tidal diffusion. Carquinez Strait in the San Francisco Bay system is an example where shoaling does not occur in the channel wherein mixing occurs. The aggregates formed there deposit at unusually high rates in contiguous areas where the bed is protected from shear and where enhanced aggregation rates are provided by flow through Increased bed shear along the entire channel usually cannot be achieved without major works that increase tidal flows, but locally reduced bed shear stresses, such as those in the turning basin in Savannah Harbor, can be increased by making the channel width uniform and by modifying the channel to reduce energy dissipation. The turning basin could be moved up beyond the mixing zone. Channel banks could be made steeper and side-channel shallow areas eliminated. The effects of such channel modifications on bed shear stress can be evaluated with hydraulic models.

Minimize Suspended Sediment Concentrations

The center role of suspended sediment concentration in determining rates of aggregation and shoaling is amply demonstrated. Means for minimizing suspended sediment concentrations include the adherence to "clean" dredging methods and spoiling outside of the area from which sediment can reenter the process. Tributaries that carry large amounts of suspended sediment might be diverted to join the ocean elsewhere if their flows through the harbor are not needed to carry wastes.

Reduce Internal Shearing Above the Bed

Areas immediately downstream from pile-supported structures shoal rapidly because internal shearing is enhanced in flow around piles and because bed shears are reduced in the region. Large aggregates are formed quickly from small ones at moderate concentrations of suspended sediments. Flow through such pile structures can often be minimized by orienting the structure appropriately and by designing the structure with minimum supporting piles. Internal shearing that results from salinity gradients does not appear amenable to reduction.

The benefits of these methods in individual cases must be compared with their total cost to determine their desirability.

VII. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY

This field study in Savannah Harbor, a partially mixed estuary, yielded information leading to the description of sediment transportation and shoaling processes presented in Chapter V. The following conclusions can be drawn from the field data, the discussion of relevant processes, and the description presented in this report:

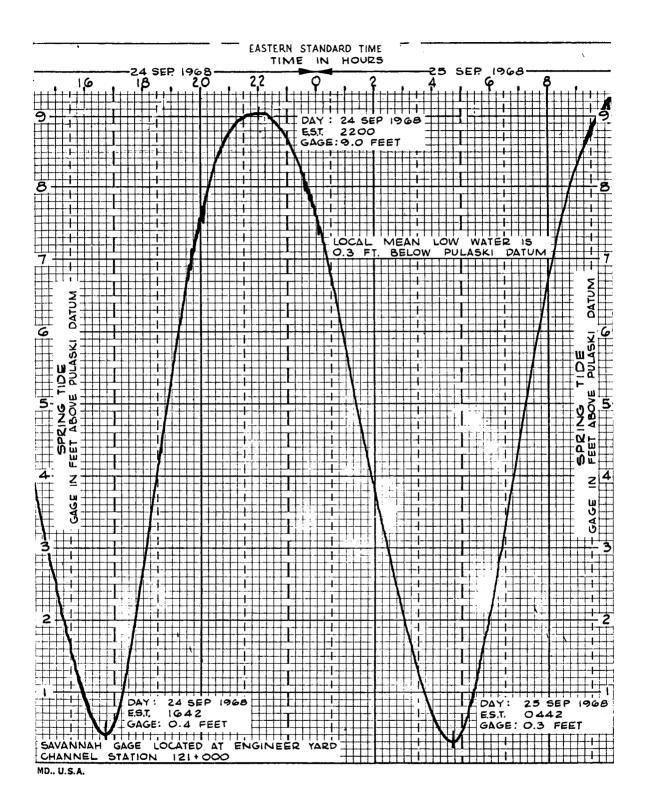
- <u>a.</u> Aggregation processes enhance the settling velocities of suspended particles and determine the physical properties of the sediment bed surface. Aggregation processes are central to the transportation processes leading to the formation of shoals in Savannah Harbor.
- \underline{b} . Repeated collision of suspended cohesive particles resulting from internal shearing in the flow, particularly in the large volume of enhanced internal shearing caused by the salinity gradient in the mixing zone, is the dominant mechanism that produces aggregation.
- <u>c</u>. The rate of aggregation depends on the concentration of suspended sediment, very strongly on the heterogeneity of the suspended particle sizes, and on local shearing rate.
- <u>d</u>. The sediment moves into the region of high shoaling rates with tidal currents from downstream with the more saline waters near the bed. The material deposits during the period of low currents near the times of slack water, then is partially or entirely resuspended as the currents increase. Bottom flood predominance is one factor causing net upstream movement of sediment.
- e. When the new deposit formed during slack periods is more than a few centimeters thick, the weight of the overburden crushes the lower aggregates in the new deposit and thereby enhances their shear strength. The shear strength of such a deposit increases with depth. Under this circumstance, stronger flood currents, which apply greater shear stress to the bed surface, erode the new deposit to a greater depth than do the weaker ebb currents. Some or all of the sediments are suspended and transported by flood currents and rest on the bed during ebb. This process greatly enhances the rate of sediment movement into the shoaling area.

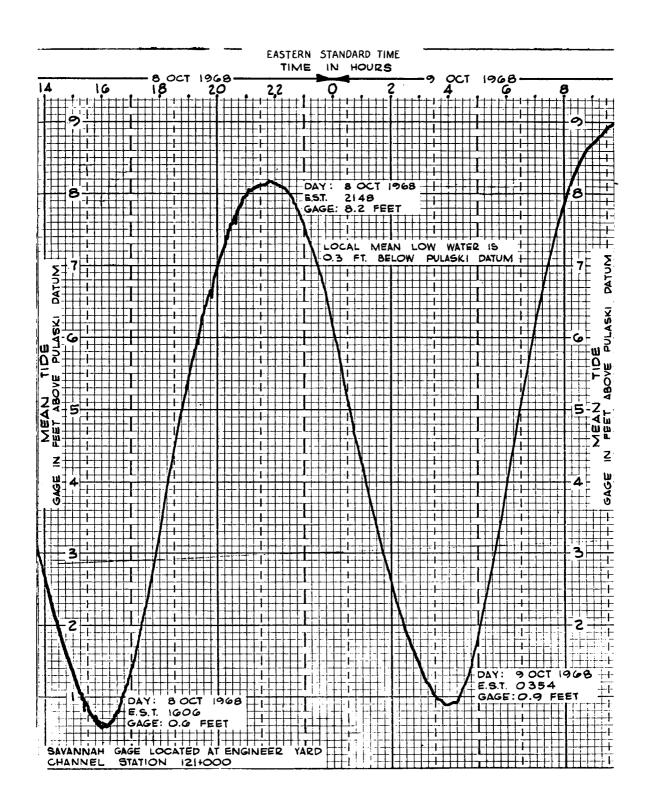
- <u>f.</u> Sediment accumulates to form shoals wherever the bed shear stresses during both flood and ebb are insufficient to resuspend all of the material deposited during the preceding slacks. Both the thickness of each deposit, which determines the shear strength profile of the deposit, and the shear stresses applied by the flow determine the shoaling rate in these areas.
- g. Some of the aggregated sediment moving upstream near the bed with the more saline water moves through the landward limit of saline water, mixes with the disperse riverborne particles, and is carried seaward over the saline intrusion through the large volume having a vertical salinity gradient and enhanced internal shearing. These returning aggregates greatly increase the rate of aggregation of riverborne suspended particles. Suspended sediment also moves vertically upward from the saline water zone as the saline waters mix with less saline water.
- \underline{h} . Aggregated suspended particles settle downstream and in shallow areas where they reenter the upstream movement, or they rest until resuspended by wind-generated waves and then reenter the upstream movement.
- <u>i</u>. Most of the new information obtained during this study was that from the measurements made within 8 ft of the sediment bed surface, and was obtained by accurately positioning the sampling intake and current meter above the sediment bed. It can be concluded that accurate positioning of such equipment <u>relative to the sediment bed surface</u> is very desirable for measurement and sampling of flows in estuaries.

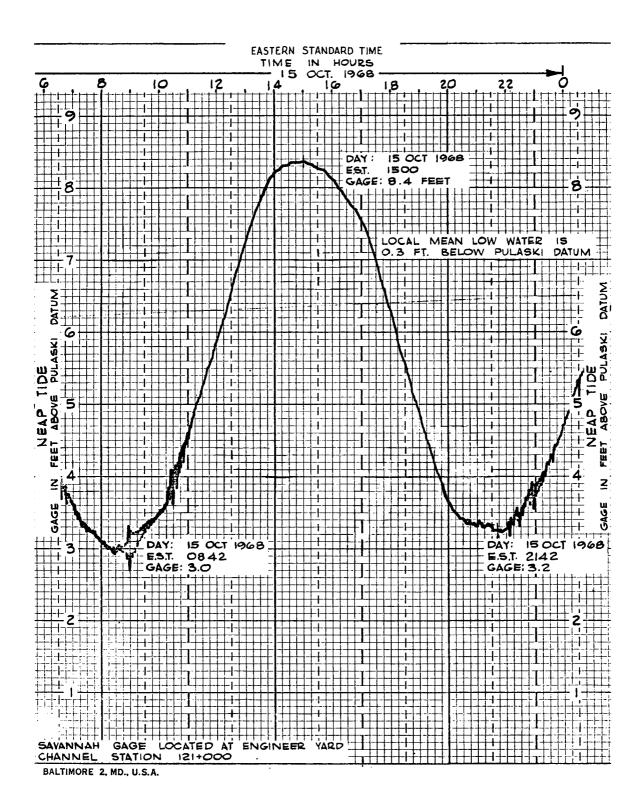
Many interesting features in a natural system as complex as the Savannah Harbor estuary could be studied further. Those areas of further study needed to improve knowledge that would lead to reduced maintenance costs are presented here.

a. The shear stress applied by the flow to the bed is an important factor in the formation of shoals. Our present ability to calculate the shear stress from a velocity profile is limited to those cases where the fluid density is uniform. A means for calculating shear stresses when the velocity profile is affected by a vertical density gradient would be useful for design to achieve the necessary bed scour. In terms of the logarithmic description of velocity profiles we need to know the

relations between density gradients and Karman's constant k at the strength of flow.


- <u>b.</u> Quantitative descriptions of the sediment transportation processes are needed to evaluate the benefits of proposed remedial measures on channel and harbor maintenance and to predict changes in suspended sediment concentrations resulting from water inflow modifications and the effects of such changes on water quality and on aquatic biota. The velocity and salinity profiles, together with the transportation mechanisms described, suggest that a two-layer numerical model might represent the hydraulic portion with sufficient accuracy, and that the shear strength profile of the bed might be simply represented. Empirical descriptions of aggregation and deposition obtained from flume studies should be useful, and an accounting procedure might be devised to describe the shoal surface.
- <u>c</u>. An estuary is a transition between unidirectional freshwater flow and a tidal ocean. All that transpires in this transition is affected to some extent by conditions at both ends. During the last few years suspended sediment inflows to estuaries have been measured, but almost no information is available on rates of loss of sediment from estuaries. Direct measurements would be very desirable. Indirect calculations using a numerical model together with measurements of sediment concentrations inside the estuary are less desirable but perhaps would be achieved more easily.
- <u>d</u>. This study involved only one estuary. Savannah Harbor is a partially mixed estuary and is typical of many; but differences in morphometry, in mineral and organic content of the sediment, in tidal ranges, and in temporal changes in freshwater and sediment inflow provide different conditions. Additional studies of this kind are needed to enlarge our knowledge of estuarial sediment transportation.


REFERENCES


- 1. Simmons, H. B., "Some Effects of Upland Discharge on Estuarine Hydraulics," Separate No. 792, Sep 1955, American Society of Civil Engineers, New York.
- 2. Schultz, E. A. and Simmons, H. B., "Fresh Water--Salt Water Density Currents, A Major Cause of Siltation in Estuaries," <u>PIANC</u>, 19th International Navigation Congress, London, Section II, Committee 3, 1957, pp 43-64.
- 3. Schultz, E. A. and Tiffany, J. B., "Effects of Density Differences on Estuarine Hydraulics," <u>Evaluation of Present State of Knowledge of Factors Affecting Tidal Hydraulics and Related Phenomena, C. F.</u>
 Wicker, ed., Report No. 3, Chapter 5, May 1965, Committee on Tidal Hydraulics, Corps of Engineers, U. S. Army, Vicksburg, Miss.
- 4. Simmons, H. B., "Channel Depth as a Factor in Estuarine Sedimentation," Proceedings, Federal Inter-Agency Sedimentation Conference, U. S. Department of Agriculture, Agriculture Research Service Miscellaneous Publication No. 970, Jan 1963, pp 722-730.
- 5. Harleman, D. F. and Ippen, A. T., "Salinity Intrusion Effects in Estuary Shoaling," <u>Journal</u>, <u>Hydraulics Division</u>, <u>American Society of Civil Engineers</u>, Vol 95, No. HY1, Jan 1969, pp 9-27.
- 6. Meade, R. H., "Landward Transport of Bottom Sediments in Estuaries of the Atlantic Coastal Plain," <u>Journal of Sedimentary Petrology</u>, Vol 39, No. 1, 1969, pp 222-234.
- 7. ______, "Transport and Deposition of Sediments in Estuaries," Contribution No. 2361, Woods Hole Oceanographic Institution, Woods Hole, Mass.
- 8. Postma, H., "Sediment Transport and Sedimentation in the Estuarine Environment," <u>Estuaries</u>, G. H. Lauf, ed., American Association for the Advancement of Science Publication 83, 1967, pp 158-179.
- 9. Schubel, J. R., "Suspended Sediment of the Northern Chesapeake Bay," Technical Report 35, 1968, Johns Hopkins University, Chesapeake Bay Institute, Baltimore, Md.
- 10. Krone, R. B., "Flume Studies of the Transport of Sediment in Estuarial Shoaling Processes, Final Report," June 1962, Hydraulic Engineering Laboratory and Sanitary Engineering Research Laboratory, University of California, Berkeley.
- 11. ______, "A Study of Rheologic Properties of Estuarial Sediments," Report 63-8, 1963, Hydraulic Engineering Laboratory and Sanitary Engineering Research Laboratory, University of California, Berkelev.

- 12. Neiheisel, J., "Significance of Clay Minerals in Shoaling Problems," Technical Bulletin No. 10, Sep 1966, Committee on Tidal Hydraulics, Corps of Engineers, U. S. Army, Vicksburg, Miss.
- 13. Fuchs, N. A., The Mechanics of Aerosols, Pergamon, New York, 1964.
- 14. Kruyt, H. R., ed., <u>Colloid Science I,</u> Elsvier Publishing, New York, 1952.
- 15. Einstein, H. A. and Ning Chien, "Effects of Heavy Sediment Concentration Near the Bed on Velocity and Sediment Distribution," 1955, University of California, Berkley, and U. S. Army Engineer Division, Missouri River, CE, Omaha, Nebr.
- 16. Ippen, A. T., Remarks at the International Union of Theoretical and Applied Mechanics Symposium, Cambridge, England, Mar 1969.

APPENDIX A FRESHWATER INFLOWS, TIDES, AND WINDS DURING FIELD STUDIES

PU	ASKI	DATUM	SEPT	EMRER 1	968			***	
	TIME	OF	He 16	HT OF		TIME	OF	HEIGHT	oe.
DATE "	HIGH	FOM	HIGH	FOM TO M	LATE	I↓™E. HIGH	U.		LOW
	HOUR	HOUR	FEET	FEET	DAY	HOUR	HOUR		
	100.	. '',''		「		i,000	- iin Au	' == '	<u></u>
1.	4.00	10.20	8.50	1.70	16.	4.00	10.00	6.80	2.30
	6.90	23.30	9.30	1.30		16.40	23.10	8.00	3.00
	4.80	11.60	8.10	0,50	17.	5,20	11.20		2.20
	7.60	0.00	9.00	0.00		17.30	0.00		0.00
	6.01	0.60	8.20	0.70	18,		0,20	7.50	2,40
	8.70	12.40	9.10	0.30		18.30	12.20	8.70	1.70
	6.90	1.70	8.40	0.30	19.	6,70	1.20		2.00
1	9.80	13.70	9.20	0.00		19.20	13.10		1.20
		2.60	8.60	0.00	_ 20.		1.90		1.50
	ō.8n	14.70	9.30	-0,10		20.30	14.20		0.90
6,	8.80	3.40	8.80	-0.10	21.		2.80	8.80	1.30
	1.30	15.60	9.10	-0.20		21.10	15.00		0.90
	9.60	4.30	8.70	-0.40	22.	9.70	3.50		1.60
2	2.00	16.30	9.00	-0.20		22.00	16.00		0.80
	0.20	4.80	8.70	-n,20	23.	10.50			1.00
	2.60	17.00	8.70	0.10		22.60	16.90		0.80
9. 1	1.00	5.20	8.50	0.10	24.	11.00	5.10		0.50
	3.20	17.70	8.60	0.60		23.00	17.70		0.40
	1.50	5,90	8.50	.0.50.	25.	11.70	5.70		.C.30
2	3.90	18.00	7.90	1.00		23.60	16.40	8.70	0.40
	2.10	6.40	7.90	0.10	26.	12.50	6.30	9.00	(. 2.0
	0.00	18.60	0.00	0,50		0.00	19,10	0.00	0.30
	0.50	6.70	7.00	0.50	27.		7.00	8.20	0.20
	3.00	19.10	8.00	1,50		13.30	19.90	8.80	0.70
	1.40	7.20	7•00	1.20	28.	1.50	7,80		0.70
1	3.80	19.60	7.70	1.70		14.30	20,70		1.30
	1.70	8.20	6.60	1.70	29.	2,60	8,80		1.20
	4.50	20.70	7.80	2.40		15.40	21.80		1.76
	3.20	9.00	6.60	1.70	30.		10,10		0,70
1	5.20	21.40	7.70	2.70		16.30	23.20		1.10
		:				728.1 6	/3.00 4	89,21 53	.21
MHW 8.43	MLW	ה 159:	9 217.	T 0	HW NO	LW			
0,43	U • Y	Z -159	y 21/a	U 9	9 8,89	2.97			····
LOW	Δ·	TER		GH WA	ATER				
MEAN	FOM					NOTES	3:		
FΤ	FT	F1		F1					÷ •
	-0.4			3 6,6			1. Lo	cal mean low	v water
					-X / 129			0.3 ft. be	
							Dat	tum.	
T 1 D	AL RA	NGE	LUNIT	IDAL TI	NTERVAL		2. Tir	me is Easter	n Daylight
MEAN	MIN			. W.	H.W.			me.	, 0 -
FT	FT	F٦		URS	HOURS				
7.52	4,1			.97					
								· 	

P(LASKI .	DATUM	OCTORE	7 1968 -	Channel S	tation 12	21+000		
	TIME	OF	HEIG	IT OF		TIME	OF	- HEIGH	TOF
ATE	HIGH "	LOW	HIGH	LOW	DATE	HIGH	LOW	HIGH	LOW
DAY	HOUR	HOUR	FEET	FEET	DAY	HOUR	HOUR_	FEET	FEET
1.	5.00	11.60	7.40	n.40	17:	5.00	12.30	8.10	2:20
	17,40	0,00	8,40	0,00		17.80	0,00	8,80	0.00
2.	5.90	0.50	7.70	0.40	18.	6.20	0.60	8.50	1.90
	18.50	12,60	8,40	0.10		19,10	13,40	8,80	1,40
3.	7.00	1.40	8.10	0,00	19	7,50	1.60	8,70	0.90
· · · · · ·	19.50	13.40	8,50	0.00		19.80	14.20	8,80	1,00
4.	7.70	2.30_	7.90	_=0,30	20.	8.10	2,20	8.80	0.20
	20.50	14.20	8,70	-0,20		20.30	14,70	9,10	0.20
5	8.60	2,70	8,90	0.30	21.	8,90	2,90	9.10	-0.30
	21.30	15.20	8.90	1.20	_	21.10	15.70	9.00	0.10
6	9.40	3,60	9,00_	0,80	22,	10.10	3,5n_	9,60	0,21
	21.60	16.00	8.90	0.80		21.80	16.60	9.20	0.00
7,	9.80_	4,10_	8,50_	0,30	23,	10,60	4.50	9,60	0,10
	22.10	16.60	8.40	0,30		22.60	17,40	8,90	0,00
8.	10.30	4.60	8.50_	70,10	24.	11,60	5.20	9.70	-0.20
	22.80	17,10	8.20	0,60		23,30	18,30	8,60	0,30
9,		4,90	9,10	0,90	25,	12,30	5,80	9,20	0.10
	23.40	17.60	8,20	1,90	_	0.00	19,10	0,00	-0.20
10	11.70_	5,60_	8,90_	1.80	26,_	_ 0.40	6,60	7.10	-0,20
	23.90	18,00	8,10	2.10		13,40	19,80	8,80	0.50
11,	12,60		8,6ე	1,90	27.		7,50	7,80	0,6r
_ •	0.00	18,60	0.00	2,40		14,20	20,60	8.60	0 , 80
12,	0.50	6.60	7.60	2,20	28.	2.50	8,70	7.70	0,60
	13.00	17.30	8,20	2,20		15,20	~21.9n ~	7.60	0,40
13.	1.40	7.30	7.00	2.10	29.	3,90	10,00	7.00	0.40
	13.80		8,10	2.90	~ _ ·	15,80	22,90	8,20	0,70
14.	2.70	8.20	7.00	2.60	30:	4.70	11.20	7.80	0.40
48.	15.20	20.90	8.40	3,40	-11	17,00	23,90	8,10	1.50
15.	3.40	9.70	7.20	3,00	31.	5.70	12,20	8.00	0.70
16.	16.00	22,70	8,40	3,20		18.20	0.00	8.20	0.00
10.	4.90 16.70	11.00 23.80	7.60 8.50	2.60 2.80					
		20,00		2.00		56.7 71	0.80 50	2.71 5	6.51
- MHW	MLW	н	i	······································	— ны	L'W			
8.3		6 -107.	3 -465.			3.01			
MEAN FT 0.9	LOW FT	FT	FŢ	LOW FT	HIGH FT	Notes:	cal mean	low wate	er
y	τ ÑÃΙ~∵ ΦΑ	NGE) This v	IDAL INT	COUAL	0.	3 ft. bel	ow Pulas	ski Datu
MEAN	AIN MIN					o	/_ P:		.1.2.1.4
	FT			.W. URS H	H.W.	2. Ti	me is <u>Eas</u>	cern Day	/11ght
FT									

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

WATER RESOURCES DIVISION

2-1985.00	SAVANNAH	RIVER NEAR	CLYO. G	Α.

USE RT 05

S	DATE	TMAX	MAX	MIN	MEAN	EQ-GH	DATUM	SHIFT	MEAN	Q
	9-04	2400	6.03	5.99	5.98	5.99			7390	
	9-05	1600		6.03	6.09				7510	
	9-06	0100	6.12	6.00	6.08	6.08			7490	
	9-07	0100	5.99	5.86	5.92	5.92			7310	
	9-08	2400	5.98	5.80	5.90	5.90			7280	
	9-09	1500	6.10	5.99	6.07	6.07			7480	
	9-10	0100	6.08	6.00	6.05	6.05			7460	
	9-11	0500	6.01	5.90	5.95	5.95			7350	
	9-12	0100	5.90	5.78	5.84	5.84			7220	
	9-13	0100	5.78	5.73	5.75	5.75			7120	
	9-14	0100	5.73	5.72	5.73	5.73			7100	
	9-15	2400	5.86	5.74	5.79	5.79			7160	
	9-16	1200	5.90	5.83	5.88	5.88			7260	
	9-17		5.82						7110	
	9-18	0100	5.63	5.51	5.57	5.57			6930	
	9-19	2300	5.52	5.49	5.50	5.50			6850	
	9-20	1500	5.59	5.53	5.57	5.57			6930	
	9-21	2300	5.66	5.58	5.61	5.61			6970	
	9-22	1500	5.77	5.68	5.74	5.74			7110	
	9-23	0100	5.73	5.44	5.60	5.60			6960	
	9-24	0100	5.43	5.25	5.32	5.32			6650	
	9-25	0100	5.25	5.22	5.23	5.23			6560	
	9-26	2200	5.24	5.21	5.22	5.22			6540	
	9-27	2400	5.33	5.24	5.28	5.28			6610	
	9-28	2400	5.45	5.33	5.37	5.37			6710	
	9-29	2400	5.82	5.47	5.63	5.63			6990	
	9-30	1200	5.94	5.83	5.91	5.91			7300	
P	ERIOD		6.12	5.21						

Water data for September 1968.

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

WATER RESOURCES DIVISION

2-1985.00 SAVANNAH RIVER NEAR CLYO, GA.

USE RT 05

S	DATE	TMAX	MAX	MIN	MEAN	EQ-GH	DATUM	SHIFT	MEAN	Q
	10-01	0100	5.91	5.72	5.82	5.82			7210	
	10-02	0100	5.71	5.49	5.61	5.61			6970	
	10-03	0100	5.48	5.40	5.43	5.43			6770	
	10-04	0100	5.40	5.37	5.39	5.39			6730	
	10-05	0100	5.37	5.34	5 . 35	5.35			6690	
	10 00	0100	3.31	3.31	3.33	3.33			0070	
	10-06	2200	5.41	5.34	5.38	5.38			6710	
	10-07	2400	5.47	5.41	5.43	5.43			6780	
	10-08	1700	5.54	5.46	5.49	5.49			6840	
	10-09	2200	5.64		5.60	5.60			6960	
	10-10	1900	5.67		5.65	5.65			7020	
									•	
	10-11	1700	5.72	5.65	5.68	5.68			7050	
	10-12	0100	5.70	5.62	5.67	5.67			7040	
	10-13	0100	5.62	5.56	5.58	5.58			6940	
	10-14	2100	5.62	5.57	5.60	5.60			6960	
	10-15	0200	5.62	5.58	5.60	5.60			6960	
	10-16	2400	5.67		5.60	5.61			6970	
	10-17	2300	5.84	5.68	5.77	5.77			7150	
	10-18	1600	5.91	5.84	5.89	5.89			7280	
	10-19	2300	5.95	5.86	5.91	5.91			7300	
	10-20	2400	6.11	5.96	6.02	6.02			7420	
	10-21	2400	6.41	6.13	6.26	6.26			7720	
	10-22	1500	6.48	6.41	6.45	6.45			7950	
	10-23	0100	6.46	6.39	6.43	6.43			7910	
P	ERIOD		6.48	5.34						

Water data for October 1968.

LOCAL CLIMATOLOGICAL DATA

U. S. DEPARTMENT OF COMMERCE - C. R. SMITE, Secretary

SAVANNAH, GEORGIA

ENVIRONMENTAL DATA SERVICE DCTOBER 1968 ENVIRONMENTAL SCIENCE SERVICES ADMINISTRATION --Latitude 32°08'N Longitude 81° 12' W Elevation (ground) 46 ft. Standard time used: FASTERN Weather types Avg. station Temperature (°F) Snow Precipitation Wind Sunshine Sky cover (Tenths) shown by code 1-9 on dates of occurrence pres-Fastest Total (Water or Average speed (m.p.h.) ice on ground Resultant speed (m.p.h.) sleet (In.) (In.) Departure from normal Degree days (Base 65°) Total (Hours and tenths) equiva-lent) (In.) 2 Average dew point Fog Heavy Fog X Y Nunderstorm See See Hail Glaze Duststorm Smote Hare Blowing Snow Percent of possible Maximum at Resultant 9 Elev. Midnight 1 midnight Direction Average Speed (m.p.h.) Sunrise a D7AM feet 51 Date Date (In.) 12 13 14 19 20 Q 10 88 88 90: 84 77 81 87 89 77 59906271686656525922281191795679 7475765677777777766777555677777777805777556777777778057775556777777778057777955567 0 0 30.06 0 30.04 0 30.04 0 30.09 0 29.98 0 29.90 0 29.90 0 30.05 0 30.05 0 30.05 0 29.98 0 29.9 9.2 11.8 10.8 1 2 3 3 -1 -0 -2 8 9 3 5 6 6 7 5 6 6 5 10 12 4 -1 2 6 6 6 5 -1 11 -1 -1 3 20 20 22 33 306 12 306 05 005 005 005 005 101 35 66 114 29 126 29 307 78 1000 922 88 88 83 522 18 66 66 91 1000 68 89 74 4 25 905 1000 1000 1000 1000 1000 for 23575 10978 1010978 10100283 9992001000 8 000 123456789 0 0 0 0 T 7 T T 10.4 10.3 4.4 9.7 6.1 10.0 10.5 7.5 7.8 0.9 9.9 9.9 5.2 11.1 11.0 10.9 11.0 10.9 10.0 10. 1 23 84 85 85 101 112 131 141 151 161 171 181 191 221 223 245 267 272 283 293 31 82 85 83 75 82 81 82 79 82 83 .64 .63 .41 1 3 3 .86 0000 66 71 74 63 68 73 50 52 55 -13 -11 -7 000 000 | Total | Dep. | Temperature. | 73 | 26 | Number of days | Season to date | Max. | Max al For the month:
0 29.98 05 2.1 7.5 27 W
Date: 24 Sum | Sum 2479 | 1780 Dep. 0,93 Greatest in 24 hours and dates
Precipitation Snow, Sleet
18 16-17 0 Extreme for the month. May be last of more than one occurrence. Precipitation Below zero temperatures or negati

HOURLY PRECIPITATION (Liquid in Inches)

- 3		A. M. Hour ending at																P. M	. Hou	r endi] <u>e</u>
	1	_2	3	3	4	. 5	6	7	8	9	10	11	12	1	2	3	4	5	6	7_	8	9	10	- 11	12	Z
1 2 3 4 5 6 7 8 9 10 112 13 14 5 16 17 18 12 22 23 22 5 26	.01	T .03	1	08	.04 T		T .01	.01 .13 T	.02		.02	T	.01 .03	T T T .09	T .04	Ť	.57	.03		.07		Ţ		T	.01	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
26 27 28 29 30 31																										26 26 26 29 30 31

Data in columns 6, 12, 13, 14, and 15 are based on 8 observations per day at 3-hour intervals. Wind directions are those from which the wind blows. Resultant wind is the vector sum of wind directions and speeds divided by the number of observations. Figures for directions are tens of degrees from true North; i.e., 09 = East, 18 = South, 27 = Wes, 36 = North, and 00 = Calm. When directions are in tens of degrees in Col. 17, entries in Col. 16 are fastest observed 1-minute speeds. If the / appears in Col. 17, speeds are gusts. Any errors detected will be corrected and changes in summary data will be annotated in the annual Summary if published.

Subscription Price: Local Climatological Data \$1.00 per year including annual Summary if published. Single copy: 10 cents for monthly Summary: 15 cents for annual Summary. Checks or money orders should be made payable and remittances and correspondence should be sent to the Superintendent of Documents, U. S. Government Printing Office. Washington, D. C. 20402. and remutances and source in gotfice. Washington, D. C. 20402.

I certify that this is an official publication of the Environmental Science Services Administration, and is crecords on file at the National Weather Records Center, Asheville, North Carolina, 28801.

**Wilking The Management of the Carolina Control of the Environmental Science Services Administration, and is crecords on file at the National Weather Records Center, Asheville, North Carolina, 28801.

Director, National Weather

			1	- 1						31			
_			AVERA	IGES	BY	HOU	RS		Res	ultant			
	E E	اء ـ ا	3		1	_	_	-		ind			
	55	cover tenths)	Station press. (In.)	蠹	30	Rei. hum.	Point F	Wind speed (m.p.h.)	5				
	운동		ž 2	5	*	- F	30	72	Direction	Speed (m.p.h.)			
	(Local	충등	* 6		≱	مَدّ ا	ă	≩=	ă	N.E			
			20.00	1.5									
	01	4	29.99	62	59	83	21	5.2	01	2.3			
	04	5	29.97	60	57	85	56	5.4	35	2.4			
- 1	07	6	30.00	59	57	85	55	6.4	03	3.5			
Į	10	5	30.03	72	64	64	58	8.8	04	3.9			
1	13	6	29.98	77	65	50	56	11.1	06	1.8			
	16	6	29.95	76	64	52	56	10.9	11	3.3			
	19	5	29.97	68	62	71	58	6.9	10	2.5			
	22	4	30.00	64	60	80	58	5.8	04	1.1			
	USCOMM-ESSA-ASHEVILLE 200												

 ⁻ below zero temperatures or negative departure from nort.
 In columns 9, 10, and 11 and in the Hourly Precipitation table indicates an amount too small to measure.
 X Heavy fog — visibility ¼ mile or less.

OBSERVATIONS AT 3-HOUR INTERVALS

HOUR SY COVER IN CONTROL OF THE CONT	SKY CCOVER (EMINA) (THING WILE) AND LEAST OF LAND LAND LEAST OF LAND LEA	SKY COVER CERTING CALL CONTROL CERTING CALL CERTING CALL CALL CALL CALL CALL CALL CALL CAL
O1 10 9 4 R 71 70 93 65 08 7 00 10 10 10 10 10 10 10 10 10 10 10 10	T 10 T 0 F 0 0 0 0 0 0 0 0	DAY 03 CF 70 69 97 69 D0 0 0 0 0 0 0 0 0
DAY 04 172 70 90 69 000 0 10 4 UNL 17 10 7 3 GFK 10 9 4 UNL 10 10 3 UNL 10 10 3 UNL 10 10 7 UNL 10 10 10 UNL 10 10 UNL 10 10 UNL 10 10 UNL 10 10 UNL 10 10 UNL 10 10 UNL 10 10 UNL 1	DAY OF C C C C C C C C C	DAY 06 0 UNL 0 F 09 100 69 30 3 7 120 12 9 120 12 0 50 12 10 13 7 10 22 8 76 77 73 72 97 72 19 3 9 120 12 10 13 7 10 28 8 76 59 73 30 6 9 128 12
O1 1d 1od 1d	S UNL O F T2 T2 OO T2 OO O O O O O O O O	DAY OP To To To To To To To T
DAY 10 04 3 UNU 5 07 12 UNU 5 07 12 UNU 5 08 10 10 4 10 10 C IN 12 13 10 C IN 12 14 10 4 0 5 15 10 4 0 5 17 17 17 17 10 0 0 18 70 72 73 31 7 18 70 72 73 71 10 0 18 70 72 73 71 10 0	DAY 11 10 80 71 R 74 73 94 76 20 6 71 100 71 R 74 73 94 72 22 5 11 UNL 14 6 6F 71 70 70 70 29 6 0 UNL 12 62 73 63 64 23 26 12 10 C1R 12 79 70 70 70 29 10 10 10 10 10 10 10 10 10 10 10 10 10	9 CIR 8 6 K 72 64 66 60 65 6
DAY 13 O1 10 CIR 7 O4 10 CIR 7 O4 10 CIR 7 O5 10 CIR 7 K 62 64 99 69 91 91 30 10 10 CIR 4 K 76 98 62 69 96 11 10 10 CIR 5 K 77 63 62 69 96 11 10 10 CIR 6 K 77 63 62 69 96 11 10 10 UNU 10 80 66 96 96 96 11 22 4 UNU 4 6 64 66 96 96 96 96 96 96	O UNL 7 56 55 93 57 00, 0 0 UNL 7 56 55 93 54 34 3 0 UNL 7 57 55 90 54 34 3 0 UNL 7 57 55 90 54 34 3 0 UNL 12 82 66 40 59 14 60 0 UNL 10 7 50 66 69 64 12 5 0 UNL 7 68 66 65 87 64 00 0	9 UNL 10 \$4 69 44 60 09 12 9 10 12 7 UNL 7 \$3 69 46 61 10 12 7 4 66 66 62 10 4 68 63 76 60 09 4
OAY 16 O4 Q UNU 7 60 59 93 86 30 30 O5 Q UNU 7 60 59 93 86 30 30 O5 Q UNU 7 65 50 65 65 65 O5 Q UNU 7 65 50 65 65 65 O5 Q UNU 12 65 74 72 71 06 9 O5 Q UNU 12 65 74 72 71 06 9 O5 Q UNU 12 65 74 72 71 06 9 O5 Q UNU 12 77 72 76 69 05 O5 Q Q Q UNU 12 77 72 76 69 05 O5 Q Q Q UNU 12 77 72 76 69 05 O5 Q Q Q UNU 12 77 72 76 69 05 O5 Q Q Q UNU 12 77 72 76 69 05 O5 Q Q Q UNU 12 77 72 72 93 71 06 05	10 150 7 72 71 97 71 08 4 10 150 7 72 71 97 71 08 4 10 150 7 73 72 93 71 06 8 10 10 10 10 10 10 10	10 130 10
OAY 19 74 73 97 73 03 5 04 0 23 4 74 73 97 73 03 6 07 6 40 7 77 73 97 73 03 6 10 9 20 12 6 77 72 74 07 10 13 6 23 12 6 77 72 74 07 10 13 6 23 12 6 77 73 90 11 14 12 12 12 12 12 12 12 12 12 12 12 12 12	7 3 2 12 6 7 73 72 93 71 09 5 0 UNL 5 6 6 70 703.00 70 02 3 10 14 6 18 72 71 77 73 05 9 13 21 2 85 71 49 64 00 8 0 UNL 10 85 75 70 75 67 09 7 0 UNL 10 6 86 58 76 64 00 5	O UNL 10
ON Q UNU 8	0 UNL 10 6 67 66 79 65 01 5 68 67 97 67 03 7 67 02 9 68 67 97 67 03 7 67 05 05 05 03 00 UNL 10 68 68 68 68 68 68 68 68 68 68 68 68 68	O UNL 8 6 7 65 65 67 62 36 3 31 10 10 10 2 7 67 66 63 87 62 36 3 31 31 10 10 2 7 67 66 93 95 35 4 10 10 10 10 10 10 10
ON 25 ON 25 ON 25 ON 26	ONY 28 O UNIL 1 8 GFK 66 65 93 64 36 3 10 100 3 GFK 68 69 67 64 02 4 6 9 100 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1	DAY 27 R CFK 72, 70, 90 69, 02 4 7 UNL 2 GFK 69 68 93 67 36 9 9 2 4 9 9 9 9 9 9 9 9 9
DAY 28 04 10 10 10 7 07 11 2 0 7 11 12 0 3 12 14 12 0 3 13 14 12 0 4 14 14 12 0 3 15 14 12 0 4 16 16 16 16 16 17 12 0 16 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18	OLUNI, 2; CF 71, 70, 93, 66, 34, 3 3 UNI: 2; CF 71, 70, 93, 66, 04, 5 5 UNI, 1; CFK 71, 69, 90, 66, 04, 5 6 UNI, 5 K 62, 71, 56, 65, 68, 11 10 UNI, 12 84, 64, 32, 51, 09, 10 10 UNI, 12 84, 64, 84, 84, 84, 84, 84, 84, 84, 84, 84, 8	DAY 30 10 140 107 90 92 81 60 05 5 10 140 107 90 92 93 61 93 5 10 UNI. 7 90 93 93 93 93 93 93 93

REFERENCE NOTES

CEILING COLUMN--UNL indicates an unlimited ceiling.
CIR indicates a cirriform cloud ceiling of unknown height.

WEATHER COLUMN—
Tornado
T Thunderstorm
Q Squall
R Rain
RW Rain showers
ZR Freezing rain
L Drizzle
ZL Freezing drizzle
S Snow
SP Snow petlets
IC Ice crystals
SW Snow showers
SG Snow grains
E Sleet
A Hail
AP Small hail
F For Gg
IF Gog

WIND COLUMNS--

Directions are those from which the wind blows, indicated in tens of degrees from true North; i. e., 09 for East, 18 for South, 27 for West. Entry of 00 in the direction column indicates calm.

Speed is expressed in knots; multiply by 1.15 to convert to miles per hour.

ADDITIONAL DATA

Other observational data contained in records on file can be furnished at cost via microfilm or microfiche copies of the original records. Inquiries as to availability and costs should be addressed to:

Director National Weather Records Center Federal Building Asheville, N. C. 28801

SAVANNAH GEORGIA

66 09

LOCAL CLIMATOLOGICAL DATA

SAVANNAH, GEORGIA
TRAVIS FIELD

ENVIRONMENTAL SCIENCE SERVICES ADMINISTRATION -- ENVIRONMENTAL DATA SERVICE

OB'N Longitude 81° 12' N Elevation (ground) Latitude 32° 08' N Weather types shown by code 1-9 on dates or Avg. station Temperature (°F) Precipitation Wind Sunshine Sky cover (Tenths) Fastest or ice or pres-Total Snow sure (In.) mile (Water equiva-lent) sleet (In.) Resultant speed (m.p.h.) Departure from normal Degree days (Base 65°) Total (Hours and tenths) ground Foy Heavy Fog x v Thunderstorm Seet Hail Glaze Duststorm Smoke, Haze Blowing Snow 2 Average dew point Percent of possible at Elev. Sesultant direction Elev. Minimum 2 Direction Midnight Average : (m.p.h.) Average Sunrise to sunset (ln.) Speed (m.p.h.) 07AH Date (In.) 15 7 10 16 17 18 19 20 21 11 22 83 88 90 70 69 65 0 29.85 03 0 29.94 27 0 30.01 11 0 30.06 18 0 30.04 13 0 29.99 30 0 29.99 08 0 29.91 10 0 29.85 15 0 29.98 03 0 29.98 03 0 29.98 03 0 29.98 03 0 29.98 03 0 29.98 03 0 29.99 08 0 29.99 08 0 29.99 08 0 29.99 08 0 29.99 08 0 29.99 08 0 29.99 08 0 29.99 08 0 29.99 08 0 29.99 08 0 29.99 08 0 29.99 08 0 29.99 08 0 29.99 08 0 29.99 08 0 30.00 06 0 30.00 06 0 30.00 06 0 30.00 06 0 30.00 06 0 30.00 06 0 30.00 06 0 30.00 06 0 30.00 06 0 30.00 06 -3 -1 -2 123456789011231451671890122234567890 72 70 66 67 71 72 73 73 72 71 000000000000000 0000000000 .17 12 8 82369386335722261616415 48 677 823 71 695 530 698 700 797 777 777 777 777 82 9 8 6 5 6.46 8.66 9.11 8.77 10.00 8.88 11.00 12.43 77.26 9.11 12.22 19.44 9.36 79.5 8 0 8 11 10 17 11 14 17 17 16 10 90 89 93 88 88 66 67 -1 -1 2 1 0 -5 -6 -7 -4 1 4 5 1 -1 2 23 687777167721559 66559 677774 .06 T 1 23 .01 88 89 89 83 83 85 88 88 88 88 .14 T 7 10 6 10 10 11 12 13 14 15 68 61 59 59 61 65 71 73 69 63 000000000000000000000 11 16 15 18 17 20 17 16 16 16 16 17 17 16 17 17 17 17 17 17 11 000 16 17 18 19 20 21 22 23 24 25 27 29 30 000000 10 .10 0 T 3 87 87 66 00000011 NE NE 85 87 87 88 61 65 65 64 68 66 64 -3 2 1 2 1 3 2 2 2 63 67 65 65 67 67 6.0 5.6 6.3 6.5 7.2 2 2 2 86 86 88 88 0000 62 59 0 10.4 n t h : Total 9
20 SE 274.7 fc
Date: 19 Possible mo
370.9 20 SE 274.7 for 198 172
Date: 19 Possible month Avg. Avg.
370.9 74 6.6 5.7
Greatest depth on ground of Dep. -0.2 Greatest in 24 hours and dates
Precipitation Snow, Sleet
.25 31- 1 0 snow, sleet or ice and date Precipitation
.25 31- 1
70° at Alaskan stations. Below zero temperatures or negative departure from normal.
 In columns 9, 10, and 11 and in the Hourly Precipitation table indicates an amount too small to measure.
 X Heavy fog — visibility ¼ mile or less.

HOURLY PRECIPITATION (Liquid in Inches)

Date					Α.	M. Ho	ur end	ing at					T	[(<u>2</u>	-			P. M	. Hou	r endi	ng at					2
	1	_2	3_	4	5	6	7	8	9	10	- 11	12	Ĺ_	1	2	3	4	5	6	7	8	9	10	11	12	Date
1 2 3 4 5	τ .	T				.02	.01					Ť		.01	.05		.01									3 4 5
6 7 8																.04 T	, O2	T		T	т	.01	т			6 7 8
10	.10	.01					.02	.01					ļ	1				т	т							10
10 11 12 13 14 15 16	T	T						.10										•				,			T	11 12 13 14 15
18 19 20 21 22 23		τ.	T		Ť	т					Ť	T		7								•			1	17 18 19 20 21 22 23 24
24 25 26 27 28 29 30												T		7	т											24 25 26 27 28 29

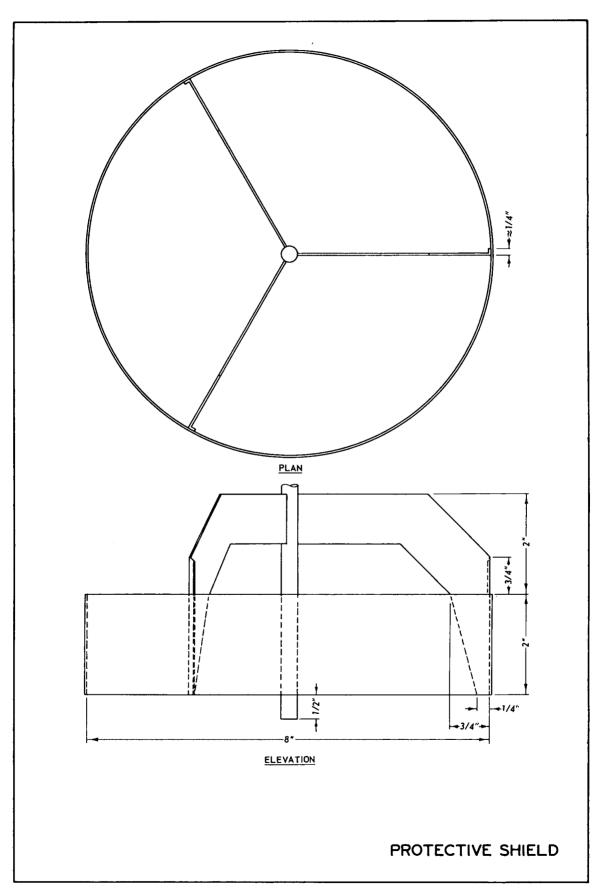
Data in columns 6, 12, 13, 14, and 15 are based on 8 observations per day at 3-hour intervals. Wind directions are those from which the wind blows. Resultant wind is the vector sum of wind directions and speeds divided by the number of observations. Figures for directions are tens of degrees from true North; i.e., 09 = East, 18 = South, 27 = West. 36 = North, and 00 = Calm. When directions are in tens of degrees in Col. 17, entries in Col. 16 are fastest observed 1-minute speeds. If the 7 appears in Col. 17, speeds are gusts. Any errors detected will be corrected and changes in summary data will be annotated in the annual Summary if published.

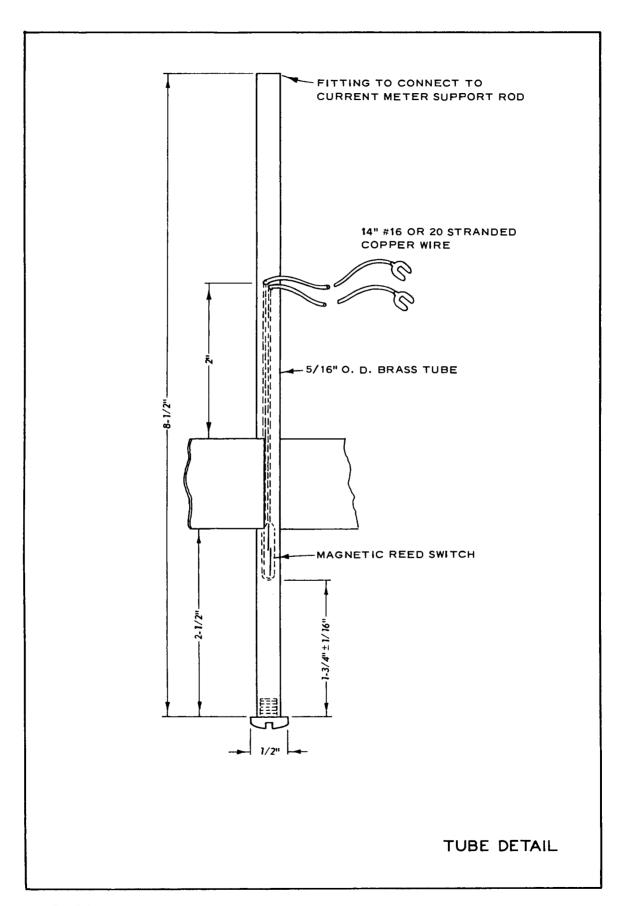
Subscription Price: Local Climatological Data \$1,00 per year including annual Summary if published. Single copy 10 cents for monthly Summary. 15 cents for annual Summary. Checks or money orders should be made payable and remittances and correspondence should be sent to the Superintendent of Documents, U. S. Government Printing Office, Washington, D. C. 20402.

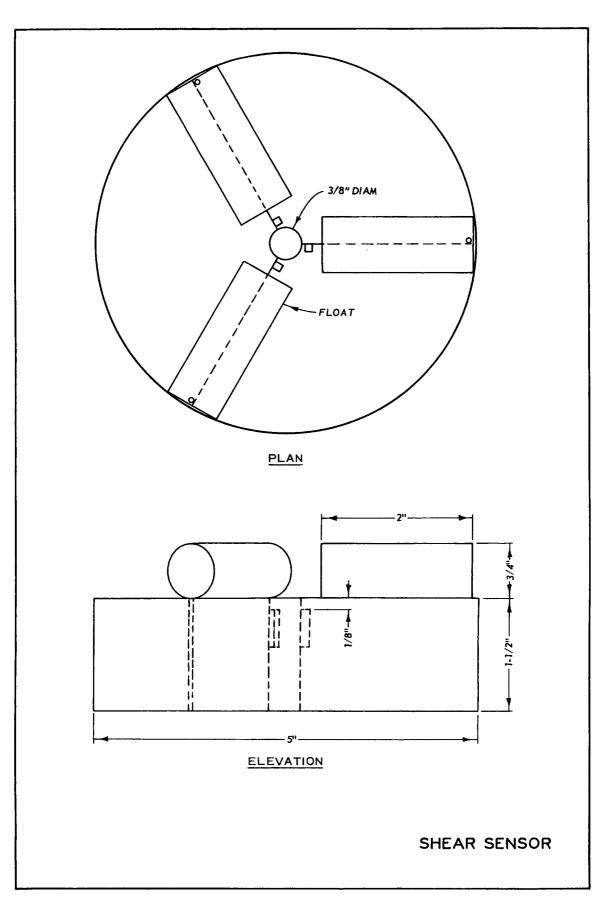
I certify that this is an official publication of the Environmental Science Services Administration, and records on file at the National Weather Records Center, Asheville, North Carolina, 28801.

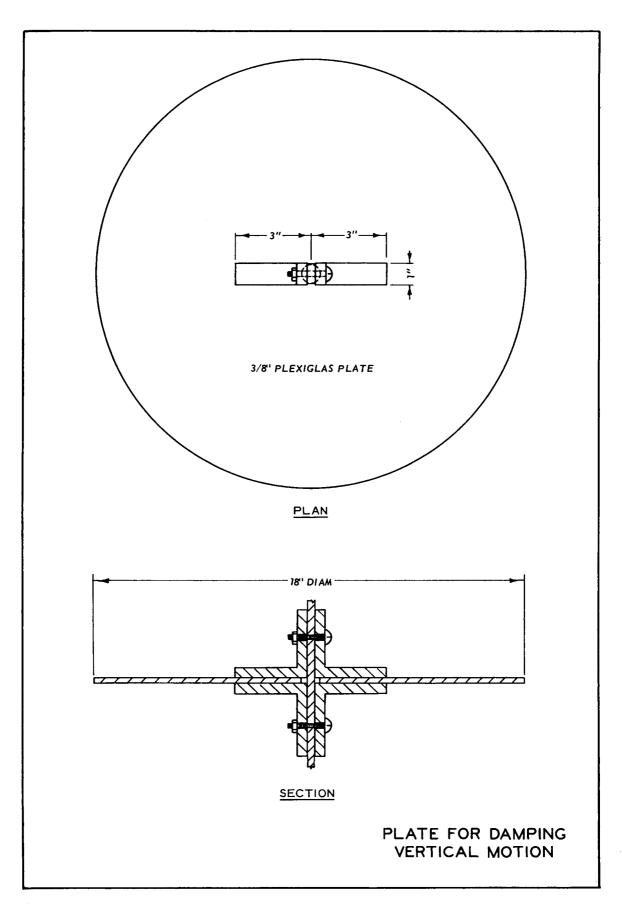
1 Carolina. 28801. Willia W. Haggard Director, National Weather Records Center

		AVERA	GES	BY	HOU	ŔS		Res	ultant
ŧ		-			<u> </u>	_	-		ind
l s E	cuths)	Station res. (In.)	를	Ē.	Ę	F)	Wind speed (m.p.h.)	5	- 2
Hour Local D		See.	캰	5	75	3'-	25	Direction	S Peed
ئ	4.	Ě	2	3	2	Š	3	1 2	ΣĒ
-	-	20 07							
01	5	29,97	69	68	92	67	3.1	03	2.0
04	6	29.96	67			66	3.9	01	2.9
07	7	29.99	68	67	94	66	4.7	02	3.6
10	6	30.02	80	72	70	69	7.9	04	6.0
13	7	29.99	85	73	55	66	8.8	08	6.0
16	7	29.95	84	72	56	66	10.6	10	7.2
19	6	29.96	76	71	75	68	6.3	10	4.7
22	4	30.00	72	69	88	68	4.3	08	1.9
		USCC	MM	-ES	SA	ASHE	VILL	E	200

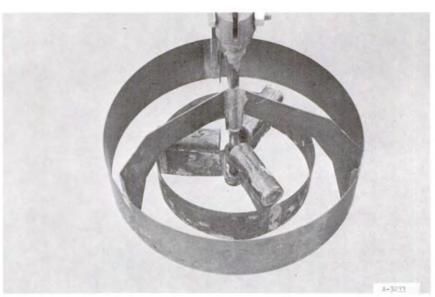

⁺ Also on an earlier date, or dates

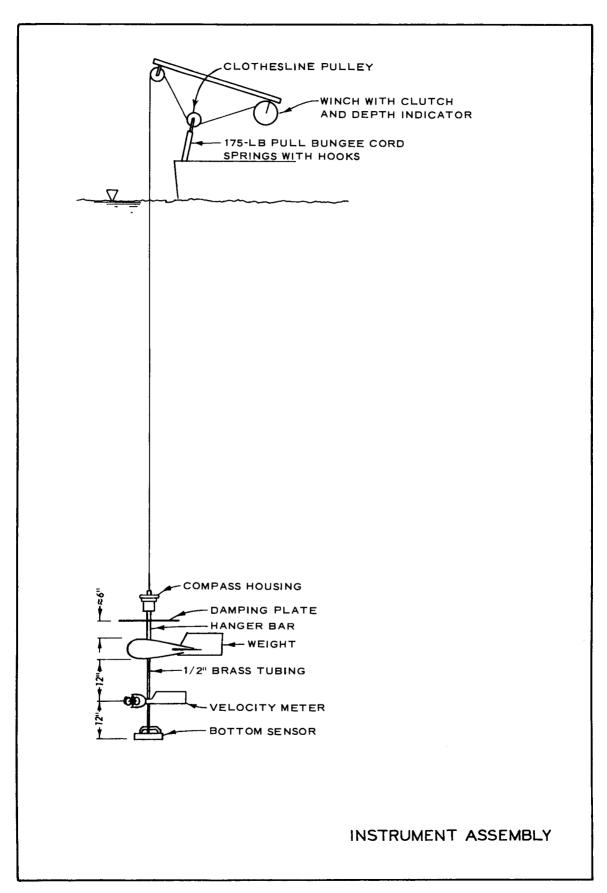

OBSERVATIONS AT 3-HOUR INTERVALS

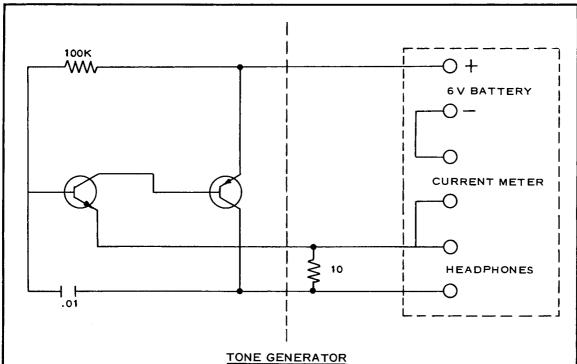

HOUR SKY COVER (Tenhs) CELLING (Hots of house) WHOLE (Hot MILE)	DRY BULB (F) WET BULB (F) REL HUM (G) DEW PT (F) DIR E SPEED SPEED Z SPEED Z KRONSI	SKY COVER (Tenha) (CELLING (Hads off.) WHOLE off.) WHOLE off.)	DRY 8 ULB (F) WET BULB (F) REL HUM (F) DEW PT DIR SYEED SYED SY	SKY COVER (Tenha) CELLING CELLING CHARLS of to, whole to the miles of to, the miles of to, the miles of the m	DAY BULB (*F) WET BULB (*E) RE(*F) DEW PT. (*F) DIR. (*F) DIR. (*F) DIR. (*F) DIR. (*F) DIR. (*F)	
DAY 01 0 UNL 6 0 07 0 UNL 6 0 07 0 UNL 6 0 13 5 UNL 9 14 3 UNL 9 15 1 UNL 8 22 3 UNL 8	63 59 81 57 00 0 61 58 84 56 27 3 60 57 84 55 32 3 80 70 60 65 23 5 86 69 42 60 21 7 83 71 53 60 44 16 10 75 68 69 64 17 8 70 67 67 66 21 3	O UNL 5 GF 0 UNL 5 GF 2 UNL 0 8 GF 0 UNL 10 0 0 GF 1 UNL 10 0 0 UNL 10 0 0 UNL 10 0 0 UNL 10	09 66 90 65 00 0 63 62 93 61 00 0 60 58 90 57 00 0 81 69 53 62 27 6 85 69 43 60 25 5 87 71 48 63 17 12 75 67 66 63 17 7 70 66 81 64 16 5	O UNL 7 O O O O O O O O O O O O O O O O O O	68 65 87 64 24 3 63 61 90 60 00 0 62 60 90 99 27 3 78 68 60 63 24 8 87 66 31 53 23 7 86 67 30 35 22 7 7 69 67 35 18 10 73 68 79 66 20 8	REFERENCE NOTES CEILING COLUMN— UNL indicates an unlimited
DAY 04 01 5 UNL 7 04 10 120 10 07 5 UNL 7 10 8 UNL 17 11 10 CIR 12 11 10 CIR 12 11 10 UNL 15 11 0 UNL 15 12 1 UNL 12	70 67 84 65 21 7 70 66 79 63 23 8 67 64 87 63 27 6 78 68 60 63 01 10 83 65 36 53 34 10 82 62 29 47 33 6 69 58 49 49 03 6 62 53 52 44 04 5	O UNL 15 4 UNL 12 4 UNL 12 5 UNL 15 3 UNL 15 5 UNL 15 6 CIR 15 10 UNL 12	58 50 55 42 05 8 53 46 51 37 03 8 52 43 49 30 04 10 67 53 36 39 07 13 74 59 40 48 08 12 74 59 40 48 08 10 69 56 56 49 08 7 61 55 67 50 07 7	DAY 06 8 UNL 12 7 UNL 8 10 100 5 10 65 8 10 35 10 10 140 10 10 140 10 10 140 10	59 55 75 51 05 5 58 55 84 53 04 5 58 55 84 53 05 6 74 66 64 61 10 10 79 67 50 59 15 13 78 68 59 62 13 12 76 70 74 67 14 6 76 72 82 70 19 7	celling CIR indicates a cirriform cloud ceiling of unknown height. WEATHER COLUMN Tornado
DAY 07 01 10 140 10 04 10 4 2 07 10 39 2 10 10 CIR 8 13 10 CIR 15 10 9 39 12 11 2 UNL 12 22 9 UNL 8	72 69 87 68 25 3 71 69 90 68 24 6 72 70 90 69 22 3 82 73 65 69 25 7 83 73 61 68 26 9 65 73 71 68 27 11 18 6 73 71 90 70 17 5	DAY 06 10 10 1 4 6F 5 UNL 0 4 6F 10 CIR 0 2 6F 10 100 5 K 9 CIR 7 10 20 10 10 100 6 TRW	73 71 90 70 08 3 71 70 93 69 26 4 69 68 93 67 07 3 81 73 69 70 27 3 85 74 59 69 15 6 72 69 87 68 09 6 69 68 93 67 30 7 71 69 90 68 01 5	10 2 0 F 10 4 1 F 10 4 1 F 10 7 1 F 10 15 2 8 K 10 15 3 RK 10 17 4 KH 10 17 6 KH	68 67 93 66 36 7 69 66 90 65 02 7 69 66 87 65 03 9 73 68 76 65 05 12 73 68 76 65 05 10 75 69 74 66 05 10 72 67 79 65 05 9 69 66 84 64 04 8	T Thunderstorm Q Squall R Rain RW Rain showers ZR Freezing rain Drizzle ZL Freezing drizzle S Snow SP Snow pellets I Ce crystals SW Snow showers SG Snow showers E Hail AP Small hail F Fog IF I ce fog
DAY 10 01 10 40 7 04 9 45 7 07 10 7 7 10 10 10 4 13 9 29 12 10 7 CIR 12 19 3 UNL 12 22 0 UNL 12	68 65 84 63 02 7 66 63 87 82 36 7 67 64 84 62 03 9 73 68 76 65 04 9 81 71 60 60 06 10 80 71 62 66 10 1 72 67 79 65 07 6	DAY 11 0 UNL 10 9 20 5 F 10 3 1 F 3 UNL 10 7 35 15 9 50 15 6 15 15 4 UNL 12	66 64 90 63 04 6 66 64 90 63 04 7 66 64 90 63 04 9 77 70 69 66 66 9 84 71 51 64 07 13 79 71 67 67 09 14 72 68 82 66 08 11 69 67 90 66 07 7	OAY 12 10 50 12 10 80 12 10 80 10 10 80 6 9 100 15 6 100 15 1 UNL 15 0 UNL 10	71 67 81 65 09 5 70 66 81 64 05 5 68 65 87 44 03 5 78 70 67 66 07 8 80 68 54 62 11 9 81 69 53 62 11 17 73 67 71 63 08 5 66 65 87 64 03 3	A Hail AP Small hail F Fog IF Ice fog GF Ground fog BD Blowing dust BN Blowing sand BS Blowing snow BY Blowing spray K Smoke H Haze D Dust
DAY 13 04 10 110 8 07 10 110 3 10 120 4 13 10 100 10 11 9 C1R 12 19 4 UNL 10 22 3 UNL 10	66 63 87 62 04 4 67 65 90 64 04 3 68 65 87 64 05 5 7 7 70 71 67 06 8 79 67 52 60 11 7 82 68 47 60 14 3 11 64 66 59 10 4 67 64 84 62 05 4	DAY 14 2 UNL 10 1 UNL 10 0 UNL 10 0 UNL 12 2 UNL 15 0 UNL 12 0 UNL 12 0 UNL 12	65 63 87 61 03 4 64 62 90 61 02 6 64 62 87 60 02 7 77 68 62 63 09 12 84 68 41 58 00 12 82 67 44 58 09 12 73 66 69 62 08 7 68 64 81 62 00 6	OAY 15 O UNL 10 10 4 5 6 14 12 9 35 15 9 45 12 9 100 12 4 UNL 12	66 63 87 62 03 7 63 63 90 62 03 8 66 64 90 63 03 10 75 69 69 64 05 12 79 70 64 65 07 13 74 68 74 65 06 11 72 68 82 66 06 7	WIND COLUMNS— Directions are those from which the wind blows, indicated in tens of degrees from the borth; i. ch. 27 for Mest. Entry of 00 in the direction column indi-
DAY 16 01 10 30 7 R 04 10 4 6 F 07 9 6 5 F 10 9 100 7 13 10 100 3 R 16 10 20 3 R 17 10 15 5 K 22 10 90 4 RK	70 67 87 66 03 9 70 67 87 66 04 9 71 68 87 67 07 9 74 71 87 70 06 8 73 71 90 70 06 10 74 71 87 70 05 7 72 69 87 88 05 6 72 70 90 69 04 6	DAY 17 10 90 6 RK 10 25 4 RK 10 14 1 8 RK 10 13 3 K 10 12 8 10 40 8 10 14 6 R	73 70 87 69 08 7 73 70 87 69 03 6 74 71 87 70 08 12 76 73 83 71 11 10 79 73 74 70 12 12 74 71 84 69 10 7 74 71 77 70 07 7 73 71 90 70 05 5	DAY 18 10 28 5 K 10 40 6 K 10 40 6 K 10 7 7 10 13 8 10 29 8 10 19 8	73 71 90 70 03 6 72 71 93 70 04 4 73 71 90 70 07 6 80 76 92 74 10 9 80 76 82 74 12 10 79 75 82 73 13 9 77 74 85 72 13 7 76 73 85 71 13 7	for East, 18 for South, 27 for West. Entry of 00 in the direction column indicates calm. Speed is expressed in knots; multiply by 1.15 to convert to miles per hour.
DAY 19 01 10 10 8 0 04 8 UNL 8 07 10 120 3 K 10 10 20 2 8 KK 11 10 12 15 16 10 70 15 19 9 70 15 22 10 9 15	75 73 90 72 11 3 75 73 90 72 09 5 76 74 90 73 09 11 75 72 97 71 04 5 78 74 85 73 34 10 79 73 77 71 34 10 74 70 22 68 33 73 70 87 69 29 6	7 15 12 12 10 11 12 0 UNL 12 0 UNL 15 2 UNL 15 5 UNL 15 1 UNL 15	70 67 84 65 34 69 69 66 84 84 31 6 63 60 84 58 36 57 36 39 7 97 36 10 79 67 50 59 35 10 80 65 44 56 59 35 3 64 59 75 56 35 3	DAY 21 0 UNL 12 3 UNL 10 8 UNL 15 9 UNL 15 9 UNL 19 10 CIR 15 9 UNL 12 8 UNL 12	58 56 87 54 31 3 53 51 90 90 27 3 51 49 90 48 35 3 72 60 48 51 05 8 77 59 32 45 07 8 77 59 32 45 10 8 66 59 65 54 16 3 60 97 84 55 00 0	ADDITIONAL DATA Other observational data contained in records on file can
DAY 22 01 4 UNL 7 07 0 UNL 7 10 0 UNL 7 13 7 45 12 14 5 UNL 15 19 3 UNL 12 22 2 UNL 12	59 93 86 51 33 3 52 50 86 48 01 3 3 51 86 49 01 4 75 64 92 56 06 7 79 66 49 58 15 6 76 66 52 59 16 9 70 64 71 60 11 66 62 81 60 14 3	OAY 23 4 UNL 10 0 UNL 10 9 UNL 0 1 GFK 10 CIR 6 7 CIR 12 9 0 10 8 CIR 10 7 UNL 8	59 57 90 56 30 3 59 58 93 97 00 0 74 68 74 68 24 4 82 69 51 62 15 17 76 68 58 62 15 17 76 7 79 65 12 4 69 67 90 66 19 3	DAY 24 4 UNL 0 11 FK 8 UNL 0 1 FK 10 2 0 8 FK 10 4 1 FK 7 80 2 8 FK 10 70 7 10 110 7 10 110 12	63 62 93 61 35 3 62 61 97 61 32 3 63 62 93 61 10 3 64 64 69 69 65 60 67 67 69 90 65 60 60 65 61 78 58 31 6	Other observational data contained in records on file can be furnished at cost via microfilm or microfiche copies of the original records. Inquiries as to availability and costs should be addressed to: Director National Weather Records Center Federal Building Asheville, N. C. 28801
DAY 25 O1 3 UNL 12 O4 0 UNL 12 O7 6 120 12 O7 0 UNL 15 O3 UNL 15 O4 0 UNL 15 O5 UNL 15	59 56 84 94 32 6 55 52 80 49 28 5 53 50 83 48 28 5 63 55 60 49 27 7 69 59 38 42 29 16 68 52 32 37 27 13 57 47 44 35 28 7 51 42 45 30 31 12	DAY 26 O UNL 12 O UNL 12 O UNL 15	46 40 58 32 29 10 43 38 65 32 29 8 39 36 76 32 30 5 44 43 32 35 6 62 48 32 32 33 12 65 48 26 23 34 10 50 44 64 38 28 4 43 41 86 39 26 3	DAY 27 0 UNL 12 0 UNL 10 0 UNL 12 0 UNL 15	40 38 82 35 00 0 36 36 82 33 00 0 36 34 82 31 00 0 59 48 44 37 27 3 69 51 25 32 19 8 69 54 33 40 16 9 56 51 69 46 18 5 52 49 83 47 20 4	
O1 O UNL 12 O UNL 15	50 47 83 45 19 5 47 45 89 44 24 5 48 45 77 41 20 6 64 55 74 47 26 12 73 56 33 42 26 19 71 51 21 29 27 16 58 46 36 31 31 6 50 42 50 32 29 6	DAY 29 O UNL 15	46 40 58 32 29 6 41 37 70 32 27 6 37 39 79 31 29 5 52 43 47 32 36 4 60 47 35 32 30 10 62 46 32 30 11 49 44 66 38 20 4 42 40 83 37 25 4	DAY 30 0 UNL 15	41 38 76 34 22 3 37 35 85 33 26 3 35 33 85 31 32 4 53 45 55 37 33 5 69 50 30 30 30 7 68 51 27 33 34 6 53 47 64 41 08 3 45 42 80 39 34 3	
ON 1 O UNL 12 O O O O O O O O O O O O O O O O O O	41 39 82 36 00 0 38 36 86 34 00 0 36 36 82 33 34 4 64 54 48 44 05 5 71 53 28 36 02 5 71 56 77 43 11 6 51 48 83 66 00 0	SAVANNAM GEURGIA	68	10		

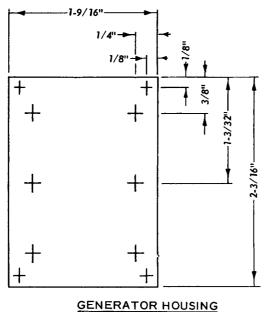

APPENDIX B

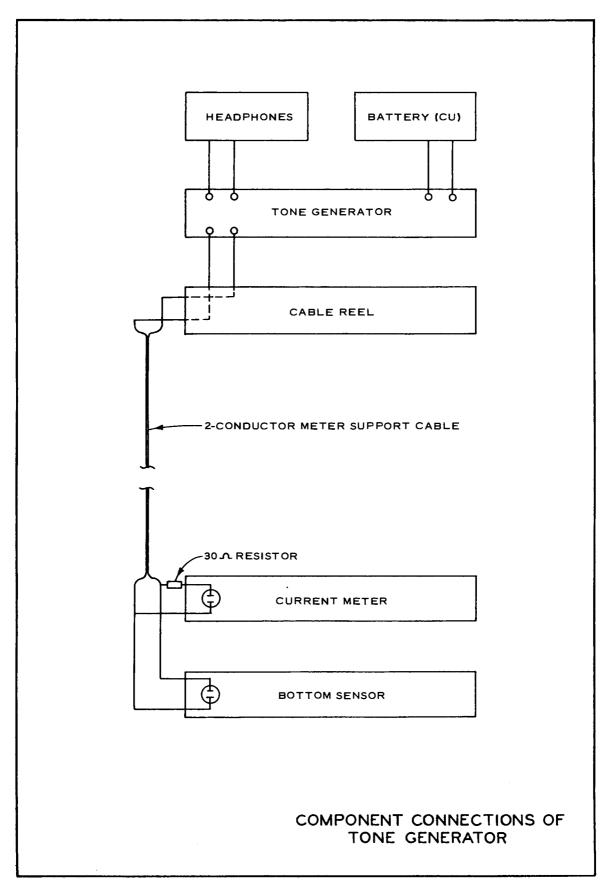
CONSTRUCTION SKETCHES OF BOTTOM SENSOR










PHOTOS OF INSTRUMENT ASSEMBLY (TOP) AND SHEAR SENSOR (BOTTOM)

SCHEMATIC OF TONE GENERATOR AND HOUSING

APPENDIX C DATA FROM SHOAL SAMPLE ANALYSES

FLOCCULATION TESTS

Bottom samples taken with modified Trask sampler at 4 locations in the shoal area. The top centimeter of material was removed from each sample and percent moisture content determined. A composite sample of about one pint was made up from bottom material obtained no deeper than one foot below the top of the shoal.

									Compos	site
Location	Date					ontent	•		Bottom San	mple No.
	(1968)				Percen	t				
			_	-	_	-	_			
		A	В	C	D	E	F	Avg.	_	
131 South	_	84.6	84.8	84.0	80.9	85.2	84.9	84.1	1	
128 North	1 20 Sep	80.6	79.8	80.9	83.1	76.8	78.6	80.0	2 3	
125 South	a 20 Sep	92.8	88.1	88.0	88.4	88.0	86.9	88.7		
122 South	19 Sep	82.7	84.2	84.0	84.7			83.9	4	
131 South	1 0ct	83.3	- '	82.7	84.2			83.4	· 5	
128 North	1 Oct	80.6	78.9	82.3	-			80.6	6	
125 South	1 Oct	86.3	86.0	86.1	86.3			86.2	7	
122 North		84.7	84.9	85.5	84.6			84.9	7.	
									*	
131 South	11 Oct	84.9	82.3	83.9	83.7			83.7	9	
128 North	-	90.0	86.5	83.5	81.7			85.4	10	
125 South		86.5	84.6	87.6	86.7			86.4	11	
123 North		82.6	82.8	84.5	83.9			83.5	12	
122 10101	11 000	02.0	02.0	04.5	03.7			03.3	*-	
131 South	1 22 Oct	81.7	82.5	83.2	80.9			82.1	13	
128 North		83.6	87.4	81.2	84.7			84.2	14	
125 North		85.8	91.9	90.8	87.0			88.9	15	
123 South		82.5	83.7	82.2	81.1			82.4	16	
IZZ NOTTI	n 22 Oct	04.3	03.7	02.2	01.1			04.4	10	

Note: One extra sample No. 3 at Sta 125 South - 20 Oct.

Corps of Engineers, USAE Waterways Experiment Station

Report on Physical, Chemical, and Petrographic Data

Concrete Division P. O. Drawer 2131 Jackson, Mississippi

Project Examination of 16 Samples from Shoals in Savannah, Georgia Harbor

Date 20 February 1969

Job No. 546-H377.19SE31

Initials: BA

Samples

1. Sixteen samples from shoals in Savannah Harbor, Georgia, were received for testing by the Soils Division of the U. S. Army Engineer Waterways Experiment Station (WES) in the fall of 1968. Each sample was a combination of sediment and water in a one-pint jar. The Soils Test Section divided the samples, keeping part of each for their tests and forwarding the balance of each (about 25 g) to the Concrete Division (CD) on 15 November 1968. The 16 samples are identified below by CD serial number and field number:

CD Serial No.	Field No.				
WES-40 Ss-1 (A through D)	Sta 131 S - Samples 1, 5, 9, 13				
WES-40 Ss-2 (A through D)	Sta 128 N - Samples 2, 6, 10, 14				
WES-40 Ss-3 (A through D)	Sta 125 S - Samples 3, 7, 11, 15				
WES-40 Ss-4 (A through D)	Sta 122 N - Samples 4, 8, 12, 16				

Test Procedure

- 2. The Soils Test Section determined particle-size distribution and specific gravity for 14 samples, and weight loss on ignition at 800 C for 12 of the samples. There was insufficient material to do these tests for the other samples.
- 3. The CD determined total cation-exchange capacity (CEC) of each sample, made a petrographic examination of all samples, and measured the weight loss of four samples at 375 C as a measure of organic content.

Physical, Chemical, and
Petrographic Report (Continued)

Date: 20 February 1969

Project: Examination of 16 Samples from Shoals in Savannah, Georgia, Harbor

- 4. The different tests are described in the following subparagraphs:
 - a. Particle-size distribution and ignition loss. The Soils Test Section determined the gradation and specific gravity of the samples in the as-received condition in accordance with provisions of Appendices IV and V of EM 1110-2-1906, dated 10 May 1965. The Soils Test Section also determined the loss on ignition as outlined in Methods of Analysis of the Association of Official Agricultural Chemists, 6th edition, 1945. That procedure consisted of processing the sample (wet) through a No. 10 U. S. standard sieve, heating approximately 2 grams (dry weight) of the material at 105 C for five hours, and then igniting the specimen at 800 C for one hour and calculating the weight loss.
 - <u>b.</u> Cation-exchange capacity. Each sample was air dried and passed through a No. 10 sieve. Cation-exchange capacity was then determined on each of the samples by replacing the native exchangeable cations with 1 N sodium acetate, removal of the excess sodium acetate with alcohol, replacement of the adsorbed sodium acetate with 1 N ammonium acetate, and determination of the replaced sodium.
 - c. Petrographic examination. The remainder of each air-dried sample was ground to pass a No. 325 sieve (444). The samples were then examined on an XRD-5 diffractometer using nickel-filtered

Physical, Chemical, and Petrographic Report (Continued)

Date: 20 February 1969 Project: Examination of 16 Samples from Shoals in Savannah, Georgia, Harbor

> copper radiation at 27 kycp and 41 ma or 50 kycp and 21 ma at scanning speeds of 2 deg 20 per minute or 0.2 deg 20 per minute under the following conditions:

- (1) Tightly packed powders.
- (2) As a slurried slide of the material finer than No. 325 sieve, both air-dried and after glycerolation.
- (3) Selected samples were examined as air-dried sedimented clay slides of minus 2µ material, and as sedimented slides heat-treated at 150 C, 300 C and 450 C.
- d. Differential thermal analysis. Selected samples passing a No. 325 sieve were examined by differential thermal analysis (DTA) in a nitrogen atmosphere, using a heating rate of 10 C per minute.
- Organic content. Keeling* has shown that ignition of clay e. samples at 375 C for 16 hours removes the carbonaceous materials in clays, without removing water contained in the structure of the clay, and without destroying either iron sulfides or carbonates which may be present. One sample from each station was ignited at 375 C for 16 hours and the loss in weight was determined.

^{*}Keeling, P. S., "Some Experiments on the Low-Temperature Removal of Carbonaceous Material from Clays," Clay Minerals Bulletin, Vol 5, No. 28, December 1962, pp 155-158.

Physical, Chemical, and

Petrographic Report (Continued) Date: 20 February 1969

Project: Examination of 16 Samples from Shoals in Savannah, Georgia, Harbor

<u>f. Other examinations.</u> Dilute hydrochloric acid and a magnetized needle were used to check for the presence of carbonate minerals and magnetic iron-bearing minerals respectively. Powder immersion mounts were examined with a petrographic microscope.

Results

5. Particle-size distribution curves for all samples except 4 and 6 are shown in figs. 1-14. All of the physical and chemical data obtained are reported on table 1. Samples 4 and 6 were too small to permit particle-size distribution, specific gravity, and loss on ignition at 800 C to be determined. Samples 13 and 15 were too small to permit loss on ignition at 800 C to be determined. The samples contain much more material finer than 2µ than most soils or sediments. The material finer than 2µ makes up 52 to 65 percent of each sample.

Station No.	Sample No.	Sampling Date	Cumulative % 2µ
1318	1	20 Sep 68	60
	5	1 Oct 68	65
	9	11 Oct <i>6</i> 8	62
	13	22 Oct 68	60
Range for Stat	ion 131S		60 - 65
1258	3	20 Sep 68	58
	7	1 Oct 68	59
	11	11 Oct 68	59
	15	22 Oct 68	61
Range for Stat	ion 125S		58 - 61
122N	4	20 Sep 68	nd
	8	1 Oct 68	52
	12	11 Oct 68	57
	16	22 Oct 68	56
Range for Stat	ion 122N		52 - 57
		(Continued)	

Physical, Chemical, and

Petrographic Report (Continued) Date: 20 February 1969
Project: Examination of 16 Samples from Shoals in Savannah, Georgia, Harbor

Station No.	Sample No.	Sampling Date	Cumulative % 2µ
128N	2	20 Sep 68	60
	6	1 Oct 68	nd
	10	11 Oct 68	55
	14	22 Oct 68	57
Range for Sta	tion 128N		55 - 60

6. The compositions and relative proportions of minerals in all 16 samples are very similar. The representative composition and proportions are shown below:

Constituents	Relative Abundance		
Clay Minerals			
Kaolin	Abund an t		
Clay-mica	Minor		
Montmorillonite	Minor		
Vermiculite	Minor		
Nonclay Minerals			
Quartz	Minor		
Plagioclase	Very Minor - Minor		
Potassium feldspar	Very Minor - Minor		
Halite	Minor		
Pyrite	Minor		
Cristobalite	Trace ?		

Halite was found in the samples examined as air-dried powders and slurries, but not in sedimented slides prepared from dilute suspensions. Two minerals were identified which are characterized by basal spacings at about 14-A in the air-dry condition--montmorillonite and vermiculite. When sedimented slides were examined after glycerolation, basal spacings at about 14 A and 17 A were found, indicating the presence of a nonexpanding mineral with a 14-A spacing and the presence of an expanding montmorillonitic clay forming a complex with glycerol. The two minerals contributing to the 14-A

Physical, Chemical, and Date: 20 February 1969 Petrographic Report (Continued)
Project: Examination of 16 Samples from Shoals in Savannah, Georgia, Harbor spacing in air-dried sedimented slides collapsed partially after heat treatment at 150 C, leaving a barely perceptible hump in the 6 to 7 20 region (14.7 to 12.6 A) which was not present in slides heat treated at 300 C or 450 C.

- 7. Several workers have reported poorly crystallized vaguely characterized clay minerals from estuaries on the Atlantic Coast of the southeastern United States;* they may differ from river to river depending on local differences in material eroded. They have been referred to as chlorite-vermiculite and as vermiculite. The preponderant evidence obtained on this group of samples indicates that vermiculite is present. It cannot be unequivocally demonstrated that interlayered chlorite-vermiculite, or chlorite, is absent. Neiheisel and Weaver did not report vermiculite from Savannah Harbor.
- 8. Diatom fragments were observed by microscope in most samples and are undoubtedly present in all. They are probably the source of the cristobalite that is believed to be present.

^{*} Powers, M. C., "Adjustment of Clays to Chemical Change and the Concept of Equivalence Level," <u>Clays and Clay Minerals</u>, <u>Proc.</u>, Sixth National Conference on Clays and Clay Minerals, 1957, p 309, Ada Swineford, Editor, Pergamon Press, 1959.

Nelson, B. W., "Clay Mineralogy of the Bottom Sediments, Rappahannock River, Virginia," Clays and Clay Minerals, Proceedings, Seventh National Conference on Clays and Clay Minerals, 1958, A. Swineford, Editor, Pergamon Press, 1960, p 135.

Neiheisel, J., and Weaver, C. E., "Transport and Deposition of Clay Minerals, Southeastern United States," <u>Journal of Sedimentary Petrology</u>, Vol 37, No. 4, pp 1084-1116, December 1967.

Physical, Chemical, and
Petrographic Report (Continued)

Date: 20 February 1969
Project: Examination of 16 Samples from Shoals in Savannah, Georgia, Harbor

- 9. The loss on ignition of samples fired at 800 C for one hour ranged from 13.9 to 17.7 percent, while the loss on ignition of samples fired at 375 C for 16 hours ranged from 9.0 to 9.7 percent. Presumably the losses at 800 C include the hydroxyl in the structures of the clays and may include results of breakdown of very minor quantities of sulfides and carbonates in the samples. Kaolin, the major clay mineral in all the samples, is not stable above 550 600 C and loses four (OH). The loss in weight of the samples ignited at 375 C is believed to be a good measure of the organic content in the samples.
- 10. The clay minerals present in all samples were poorly crystalline. The nonclay minerals were present as very fine particles with over 90 percent passing a No. 200 sieve. Under the microscope the sample appears to be over 80 percent clay while the X-ray pattern appears to show that clay is present in an amount less than 20 percent. This inconsistency is somewhat explained by a high background level on the X-ray patterns and the obviously poor crystallinity of the clay minerals present. Clay minerals are believed to amount to more than half of each sample.

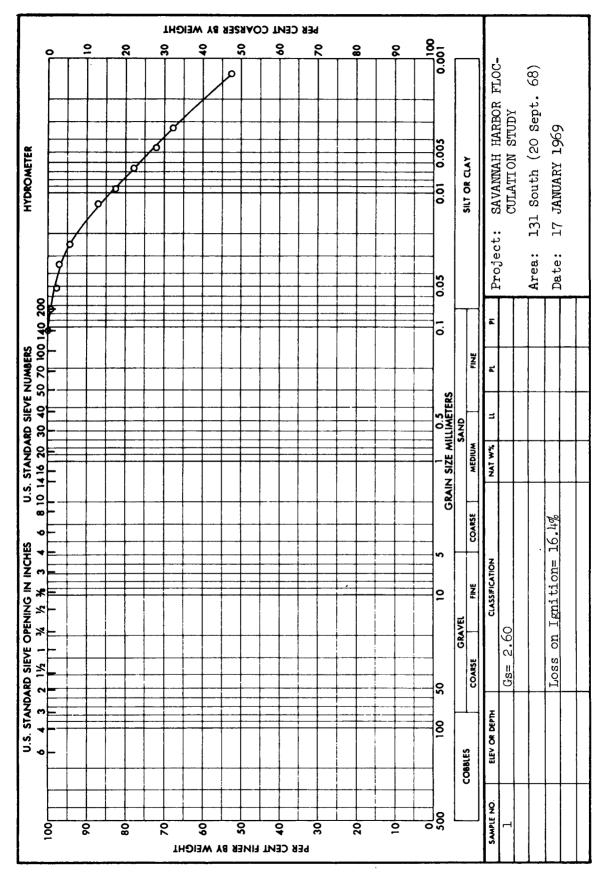
Physical, Chemical, and
Petrographic Report (Continued)

Date: 20 February 1969

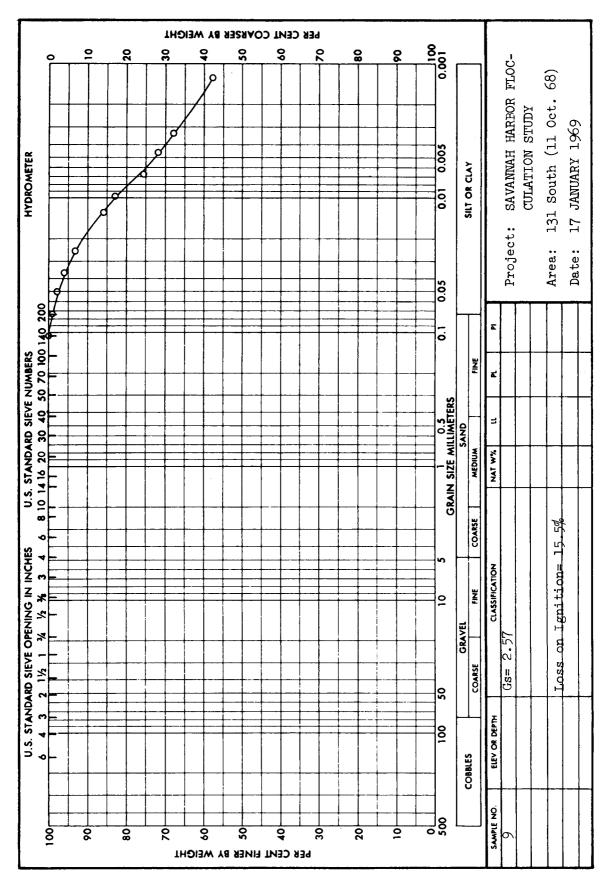
Project: Examination of 16 Samples from Shoals in Savannah, Georgia, Harbor

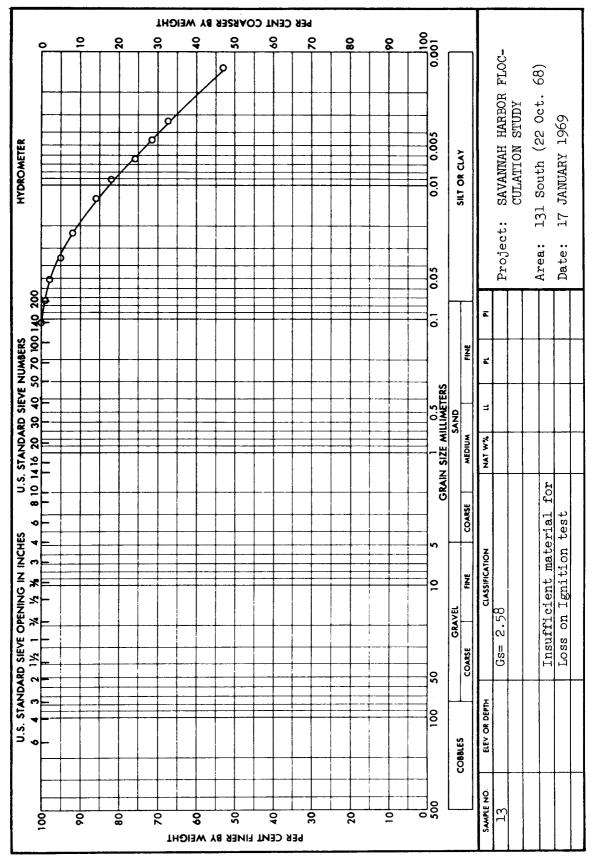
- 11. The sixteen samples from shoals in Savannah Harbor are of similar mineral composition, consisting of the clay minerals kaolin, clay mica, montmorillonite, and vermiculite, and of the nonclay minerals quartz, plagioclase and potassium feldspar, pyrite, halite (from the estuarine water), and possibly cristobalite. All of the samples were very fine grained with over 50 percent finer than 2μ. Cation-exchange capacity ranged in single determinations from 30.4 to 43.3 meq per 100 g; the highest average value was that for station 122N, 38.9, but the highest individual value was determined in sample 6 from station 128N.
- 12. We did not find a relation between any pair or group of properties determined for this group of samples when the samples were sorted either by stations or by sampling days.* It is possible that trends would become apparent if either samples from more stations or samples taken on more days, or both, were available.
- 13. The mineral composition is reasonable considering the geology of the source area and previous published results on samples from the Savannah River (ref 3, p 6).
- * Samples 1, 2, 3, 4(?) were taken 20 Sep 68; samples 5, 6?, 7, 8, 1 Oct 68; samples 9, 10, 11, 12, 11 Oct 68; samples 13, 14, 15, 16, 22 Oct 68.

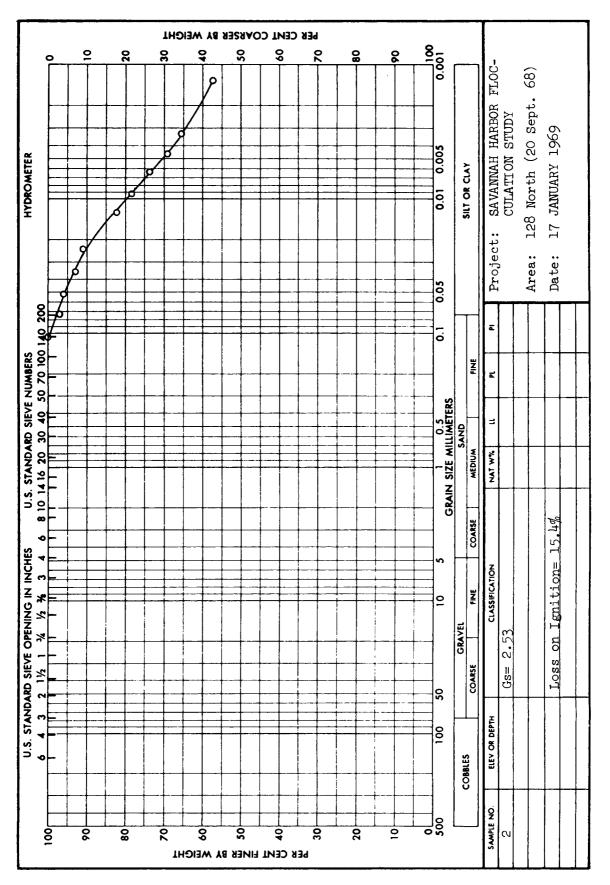
15 Incl
Table 1
Figs. 1-14

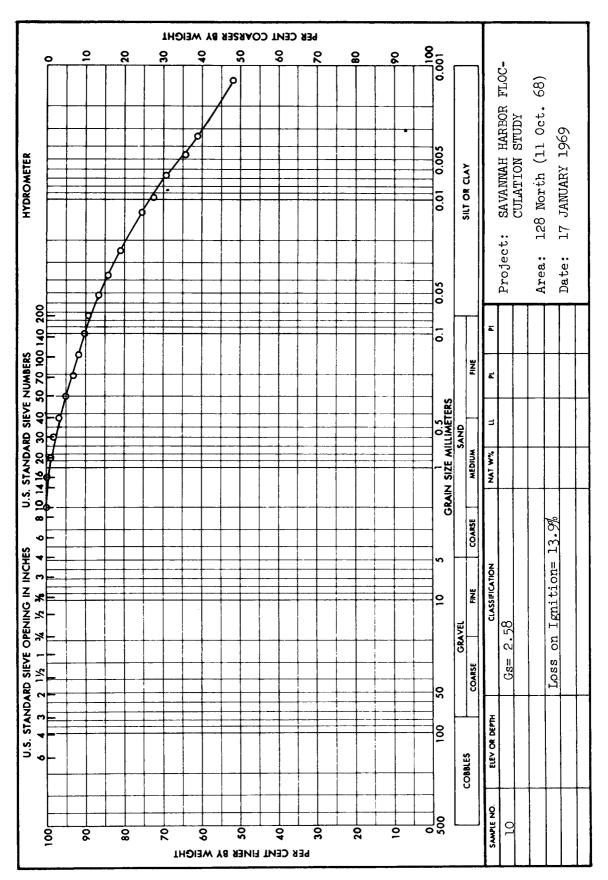

Table 1

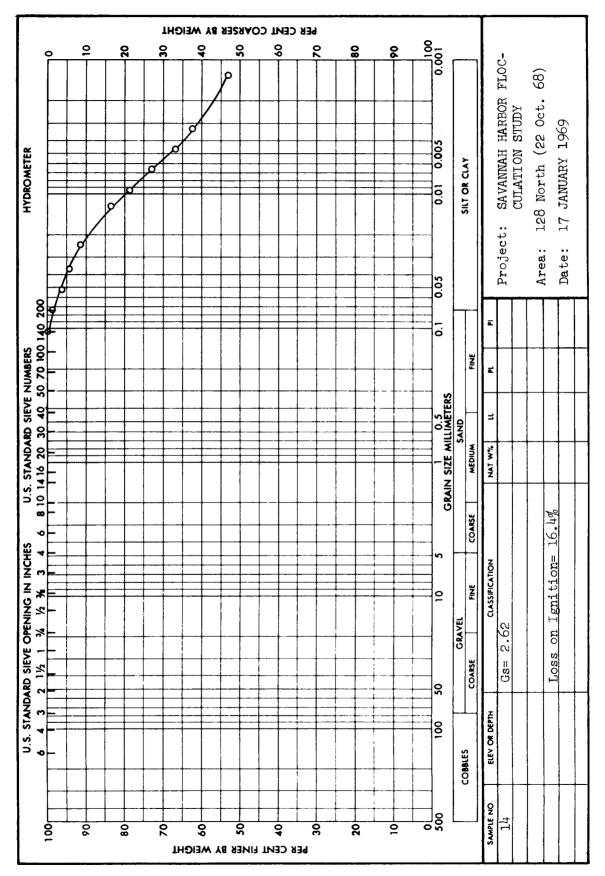
Physical Data on 16 Shoal Samples
from Savannah Harbor

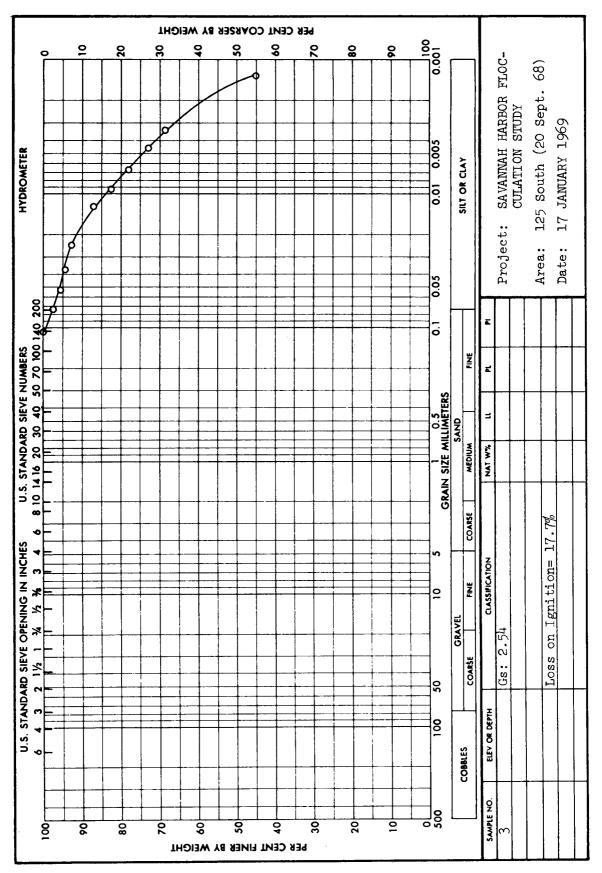

Fiel Identifi Station No.	cation	Specific Gravity G _S	Cation-Exchan Milliequivale Sample Av		Ignition	
131 S Range	1 5 9 13	2.60 2.53 2.57 2.58 2.53 - 2.6	35.2) 39.6) 32.4) 38.2) 50 32.4 - 39.6	36.4	16.4 16.6 15.5 n.d.(a 15.5 - 1)
128 N Range	2 6 10 14	2.53 n.d. 2.58 2.62 2.53 - 2.6		36.2	15.4 n.d. 13.9 16.4 13.9 - 1	-
125 S Range	3 7 11 15	2.63	30.4) 40.0)	36.9	17.7 16.6 15.7 n.d. 15.7 - 1	-
122 N ^(b)	4 8 12 16	n.d. 2.53 2.56 2.53 2.53 - 2.5	42.3) 38.0) 37.6) 37.6) 66 37.6 - 42.3	38.9	n.d. 15.1 16.3 14.8 14.8 - 1	9 . 7

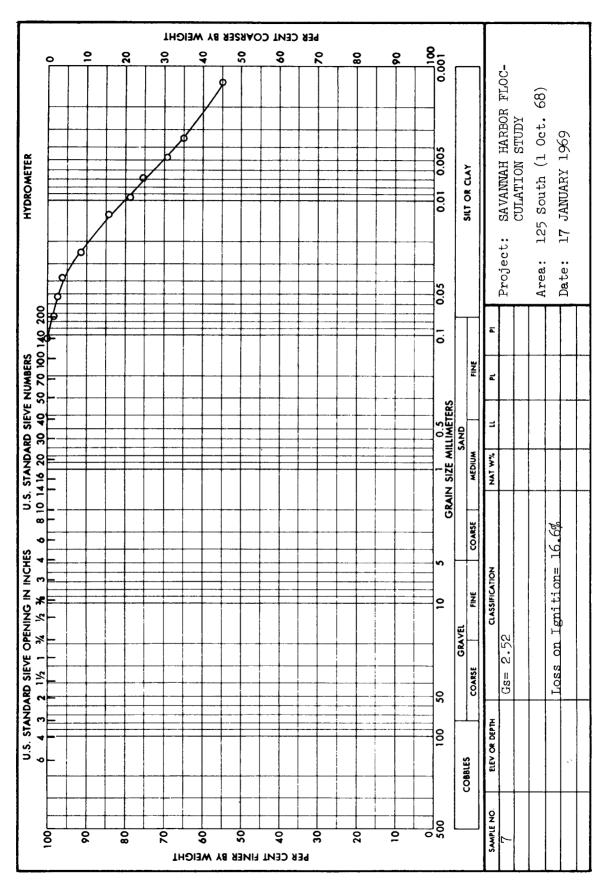

(a) Not determined.

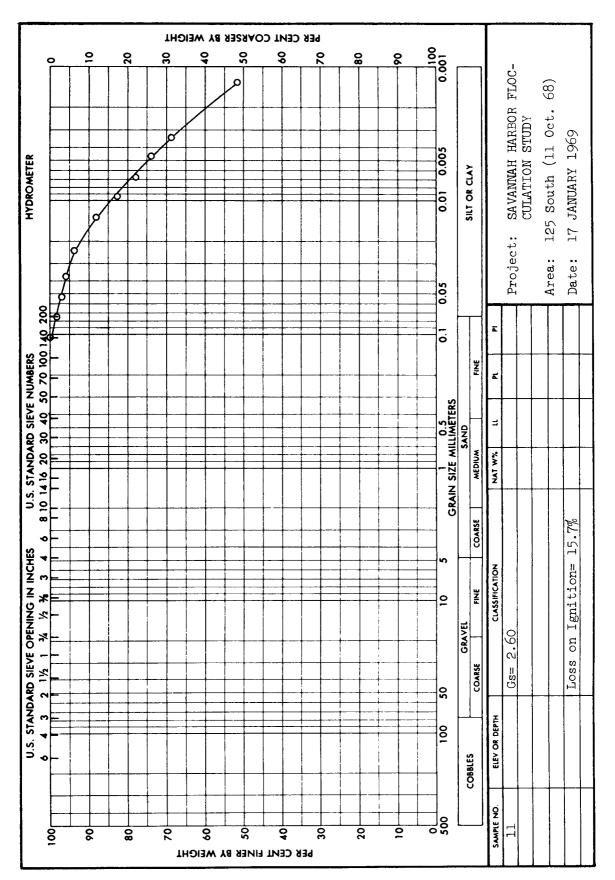

⁽b) It is possible that sample 4 was taken on the south side of the river and samples 8, 12, and 16 on the north.

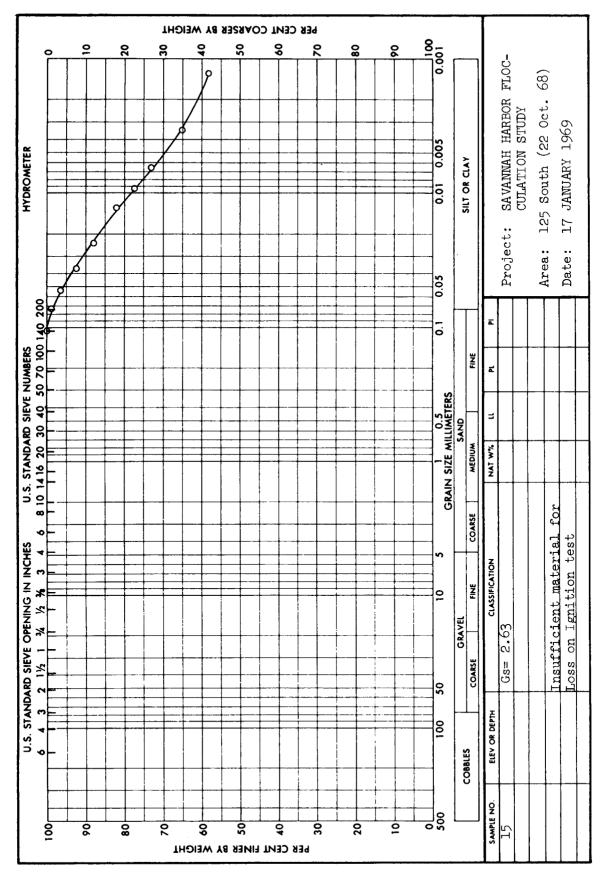


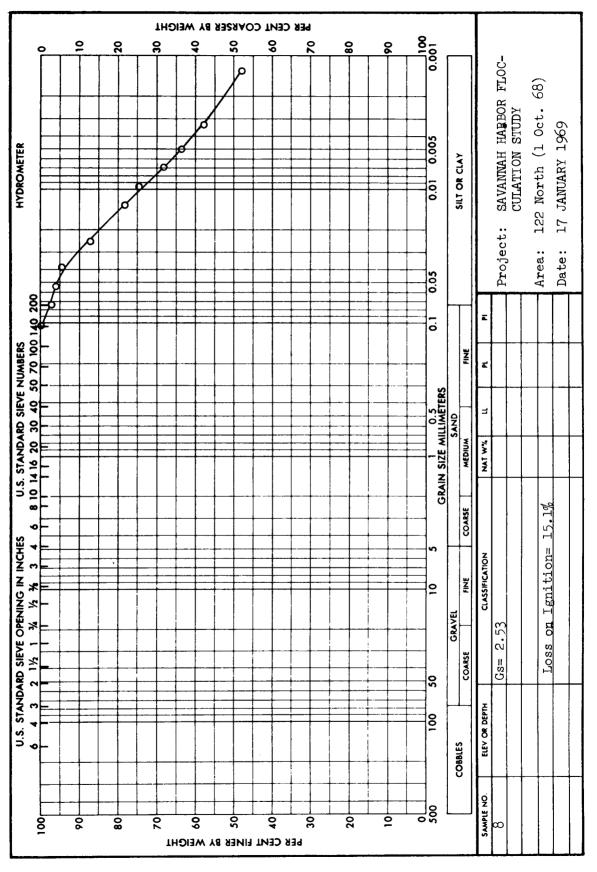


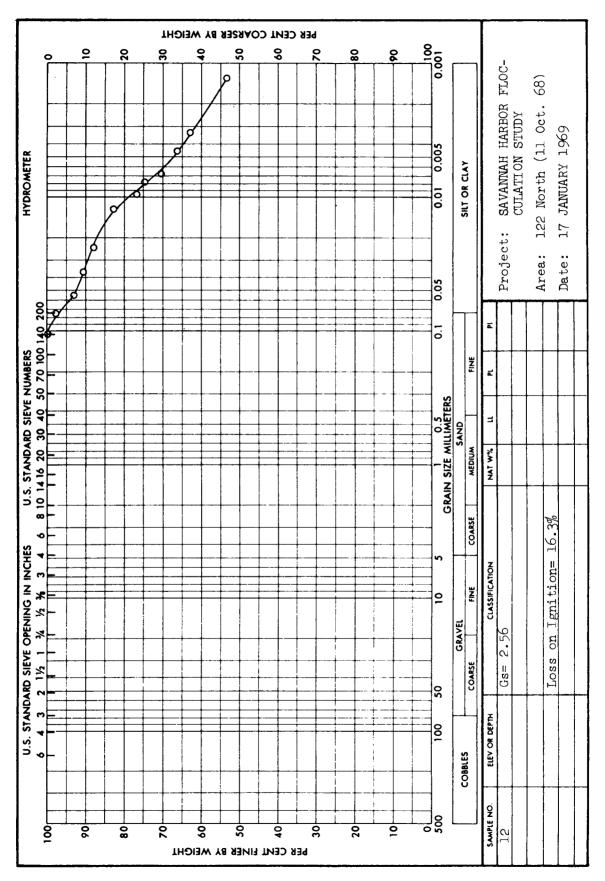


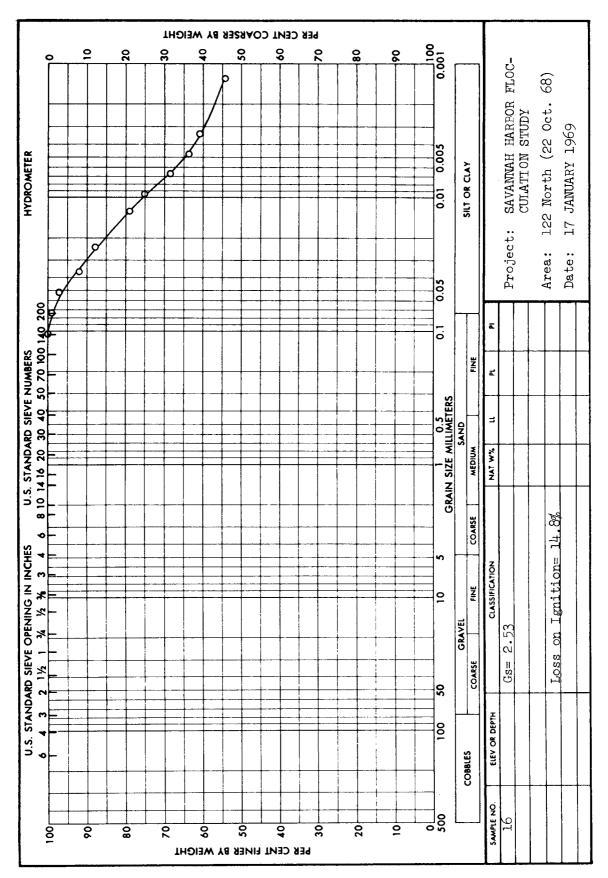












Security Classification			·					
DOCUMENT CONTROL DATA - R & D								
(Security classification of title, body of abstract and indexing a	nnotation must be e							
1. ORIGINATING ACTIVITY (Corporate author)		28. REPORT SECURITY CLASSIFICATION						
G		Unclassified						
Committee on Tidal Hydraulics		2b. GROUP						
Corps of Engineers, U. S. Army		ł						
3. REPORT TITLE		L						
- N. J.								
A FIELD STUDY OF FLOCCULATION AS A FACTOR IN ESTUARI	AL SHOALING PRO	CESSES						
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)			•					
Final report								
5. AUTHOR(5) (First name, middle initial, last name)								
Ray B. Krone								
8 REPORT DATE	78. TOTAL NO. OI	E DACES	7b. NO. OF REFS					
	118	FAUES	16 16					
June 1972								
88. CONTRACT OR GRANT NO.	98. ORIGINATOR'S	REPORT NUME	ER(S)					
	m= -b/							
b. PROJECT NO.	recnnical B	ulletin No. 1	.9					
c.	95. OTHER REPO	RT NO(5) (Any of	her numbers that may be assigned					
	this report)	,	· · · · · · · · · · · · · · · · · · ·					
d.								
10. DISTRIBUTION STATEMENT	<u> </u>							
10. DISTRIBUTION STATEMENT								
Approved for public release; distribution unlimited.	•							
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY							
	Committee on Tidal Hydraulics							
	Corps of Engineers, U. S. Army							
	_							
13. ABSTRACT	L							
Simultaneous measurements of currents, salinities, a								
locations upstream, inside, and downstream of an are								
tidal cycle during each of three tide ranges to lear formation of shoals. The sampling stations were loc								
As shown in the data, chemical and hydraulic condition								
suspended particles provide the cohesion, frequency								
aggregations of large numbers of mineral particles.								
profiles at the strength of flow showed that particle								
the individual particles that comprise the shoal. F								
pended material at Savannah. The data also provide								
materials. Net upstream movement of sediment was en								
water followed by resuspension of larger amounts of	material during	flood flows	than during ebb that re-					
sulted from larger bed shears imposed by flood flows								
insufficient to resuspend all of the material that d	-	-						
is resuspended in the shoaling areas is transported								
saline intrusion and is returned downstream in the l conditions facilitate aggregation. Particles settle								
flows near the bed. This recycling provides long ti								
observed along the axis of estuaries. Control of sh								
that reduces suspended sediment inflow, increases se		or maintains	sufficient bed shears to					
that reduces suspended sediment inflow, increases se keep the sediment in motion.		or maintains	s sufficient bed shears to					
		or maintains	sufficient bed shears to					
		or maintains	s sufficient bed shears to					
		or maintains	s sufficient bed shears to					
		or maintains	s sufficient bed shears to					
		or maintains	s sufficient bed shears to					
		or maintains	s sufficient bed shears to					
	diment outflow,	or maintains	sufficient bed shears to					

Unclassified
Security Classification

Unclassified

Security Classification			r				
14. KEY WORDS		LINK A		LINK B		LINK C ROLE WT	
Estuaries							
Flocculation							
Savannah Harbor			ŀ				
Sediments]						
Shoaling]			:			
Tides							
i	j ,		1				
	!		1				
]		ŀ	·	1		
			1				
	•						
			1				
	1						
	l						
]		İ		
·							
·							
•							
·							
<u> </u>	<u> </u>	L					

Unclassified
Security Classification