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FOREWORD

Laboratory and field studies of the transportation processes in
estuaries that lead to accumulation of cohesive sediments in deepened
channels and mooring areas have been conducted by a number of branches
of the Corps of Engineers. These studies have been part of a continuing
effort to develop methods of harbor design and maintenance procedures
that would reduce the continuing costs of dredging. It is now recog-
nized that suspended sediments have important roles in the maintenance
of water quality for recreation and wildlife, and these studies will
provide valuable information for estuarial water-quality management.

This is the latest in a sequence of studies on flocculation of
suspended sediment particles and on the importance of flocculation proc-
esses to the movement and accumulation of cohesive particulate materials
in estuaries. FEarlier studies by this author that include portions con-
cerned with flocculation were the "Silt Transport Studies Utilizing
Radioisotopes," 1956-60, and the "Flume Studies of the Transport of Sed-
iment in Estuarial Shoaling Processes,”" 1959-62, both for the San Fran-
cisco District; "Suspension of Cohesive Sediment by Wind-Generated
Waves," 1963-6k4, for the Coastal Engineering Research Center; and "A
Study of Rheologic Properties of Estuarial Sediments," 1961-63, for the
Committee on Tidal Hydraulics. Only the first of these included field
studies with observations of sediment movement in parts of an estuary.
The subsequent laboratory studies have provided additional knowledge of
the changing character of cohesive materials in deposits and during
movement in suspension and of the processes of deposition and scour of

cohesive particles. The field study reported herein was designed to
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show the importance of these processes to the formation of shoals in an

estuary.

Portions of this study were carried out by the South Atlantic Di-

vision Laboratory, the Savannah District, and the Waterways Experiment

Station of the U, S, Army Corps of Engineers.

cooperation of the personnel in all
responsible for the success of this
agencies were Mr, F., M, Bell of the
sponsible for analyses of the water

Savannah District and member of the

The interest and splendid
of these organizations are largely
study. Principals in each of these
South Atlantic Division, who was re-
samples; Mr., J. W. Harris of the

Committee on Tidal Hydraulics, who

organized the field crews and equipment and arranged for sampling of

shoal material and fathometer surveys; Mr. H. J. Rhodes of the Waterways

Experiment Station, who supervised the field measurements, collected and

organized the data, and supervised the construction and testing of the

bottom sensor; Mr., J. R. Compton of the WES Soils Division, who was re-

sponsible for analyses of shoal samples; Mr, H. B, Simmons of the WES

Hydraulics Division and Member, CTH,

who was responsible for organiza-

tion and administration of the project; and Mr, J. B. Tiffany, Chairman,

Committee on Tidal Hydraulics, who monitored the study during its plan-

ning and execution.

Mr. C. F. Wicker, Consultant to the Committee, Mr. H. B. Simmons,

and the author planned the study; and Messrs., Wicker and Simmons re-

viewed the report before final reproduction.

The contributions made by all participants, and especially the

detailed planning and review contributed to the study by Messrs., Wicker

and Simmons, are gratefully acknowledged and sincerely appreciated.
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NOTATION

Reference elevation above bed

Slope of logarithmic velocity profile

Concentration of dissolved salts

Concentration of uniform suspended particles in an open channel
Water depth

Capture coefficient

Acceleration of gravity

RMS shearing rate, local velocity gradient

Frequency of collisions on a suspended particle by other par-
ticles due to differential settling, Brownian motion, or fluid
shearing, respectively

Boltzman's constant, Karman's constant

Mass of dried particles

Mass of water-particle mix

Number concentration of suspended particles
Energy dissipated per unit volume of fluid
Collision radius for i-size and j-size particles
Time

Absolute temperature

Temporal mean horizontal velocity at elevation 2z above bed
Shear velocity

Relative velocity of two settling particles
Settling velocity of suspended aggregates
Elevation above bed

w/ku,

Viscosity of water

ix



Kinematic viscosity

Water density

Density of water with dissolved salts
Density of mineral particles

Density of water-particle mix

Shear at elevation above bed =z

Shear on bed surface




SUMMARY

Simultaneous measurements of currents, salinities, and suspended
sediment concentrations were made at locations upstream, inside, and
downstream of an area of rapid shoaling in Savannah Harbor throughout a
tidal cycle during each of three tide ranges to learn the importance of
flocculation processes to the formation of shoals. The sampling sta-
tions were located in the zone of mixing of river and ocean waters. As
shown in the data, chemical and hydraulic conditions prevail that to-
gether with an abundant supply of suspended particles provide the cohe-
sion, frequency of collision, and time for formation necessary to form
aggregations of large numbers of mineral particles. Changes of concen-
tration at slack and concentration profiles at the strength of flow
showed that particles have settling velocities much greater than those
of the individual particles that comprise the shoal. Flocculation de-
termines the settling velocities of suspended material at Savannah.

The data also provide information on deposition and scour of sed-
iment materials. Net upstream movement of sediment was enhanced by the
deposition of suspended material at slack water followed by resuspension
of larger amounts of material during flood flows than during ebb that
resulted from larger bed shears imposed by flood flows. Sediment accu-
mulates wherever later bed shears are insufficient to resuspend all of
the material that deposits during periods near slack water. Material
that is resuspended in the shoaling areas is transported through the
face and upstream through the toe of the saline intrusion and is re-
turned downstream in the less saline upper portion of the flows where
hydraulic conditions facilitate aggregation. Particles settle down-
stream and subsequently can return upstream with flows near the bed.
This recycling provides long times for flocculation and accounts for
turbidity maxima observed along the axis of estuaries.

Control of shoaling in such areas includes application of any
means that reduces suspended sediment inflow, increases sediment outflow,
or maintains sufficient bed shears to keep the sediment in motion.

Appendixes A, B, and C included herein present data from field
studies, sketches of the bottom sensor, and data from shoal sample anal-
yses, respectively. Appendix D, which presents velocities, salinities,
and suspended solids from field measurements and samples, is published
under separate cover in limited quantity. Copies are available upon re-
quest from the Recorder, Committee on Tidal Hydraulics, care of U. S.
Army Engineer Waterways Experiment Station, Corps of Engineers, P. O.
Box 631, Vicksburg, Mississippi 39180.
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A FIELD STUDY OF FLOCCULATION AS A FACTOR IN
ESTUARIAL SHOALING PROCESSES

I. INTRODUCTION

"Salt" flocculation has been postulated for years to account for
observed deposition of riverborne suspended sediments where river waters
mix with ocean waters in estuaries. Simmons,l Schultz and Simmons,
Schultz and Tiffany,3 and Simmonsh have shown, however, that in estuaries
such as the Savannah River estuary accumulations of sediment occur where
landward transport of sediments by intruding sea water diminishes, i.e.
near the landward limit of saline water intrusion where "river and ocean
waters mix."

Harleman and Ippen5 have further described the relation between
the nodal point of fresh and saline water circulation near the bed and
the formation of shoals. Deposition in this region appears from these
sfudies to be primarily the consequence of net water movement resulting
from density differences between fresh and ocean waters, which has led
Meade6’7 and others to question whether flocculation is a significant
factor in estuarial shoaling processes.

There is little doubt that shoaling in this region is a more com—
plex process than simple aggregation and settling resulting from the
mixture of river and ocean waters. Maximum concentrations of suspended
sediments are observed in the mixing regions with diminishing concen-
trations both landward and seaward of the mixing zone (Meade,7 Postma,
and Schubel9), which 1s not accounted for in the simple model. Shoaling
does not always occur in the mixing region, as in San Francisco Bay
where it occurs in neighboring areas, which indicates that transport
from the mixing zone is possible even if flocculation occurs there.

Fine sediment particles are carried in suspension for long dis-
tances by even sluggish rivers and then are deposited in the river estu-
ary. There must be an increase in the settling velocity of such river-
borne material after it enters the estuary. Only aggregation of the fine

mineral and organic particles or of small aggregates suspended in the



river waters can account for an increase in their settling velocity.

0,11 have shown that aggregation of estuarial sedi-

Laboratory studiesl
ments can occur at ocean water salinities greater than about 1 g/%, and
conditions that promote aggregation enhance the rate of deposition of
suspended estuarial sediments from flowing water. These studies also
showed that such aggregates are sufficiently strong to withstand trans-~
porting conditions.

Shoaling in the region in an estuary where river and ocean waters
mix, therefore, can result from both currents near the bed that trans-
port suspended sediment into the region from both downstream and up-
stream, and whose transporting capacity is diminished in the area, and
from enhanced settling velocities of the transported particles resulting
from their aggregation. This study is an investigation of the processes
of aggregation in such a region and of the importance of aggregation to
the formation of shoals. It was expected that such knowledge would lead

to channel and harbor design and maintenance procedures that would re-

duce shoaling rates.



II. STUDY APPROACH AND PROCEDURES

>~ using

The laboratory studies at the University of Californialo
uniform steady flow in recirculating flumes and rheological measurements
indicated that flocculation could be a significant factor in estuarial
shoaling. Field measurements were necessary to confirm the importance
of aggregation to actual shoaling and to provide descriptions of cohe-
sive suspended sediment behavior under variable density tidal flow con-
ditions. Savannah Harbor was selected for this study because of these
characteristics: It has simple geometry, a factor that is discussed
further below. It is a typical example of a partially mixed estuary,
which is the most common type found in the United States. Most of the
shoaling occurs in a well-defined reach. Further, a number of field
studies have been made in the Savannah estuary, and additional data will
complement the existing information and contribute toward an overall de-

scription of sediment transport patterns there.

Study Location and Observations

A plan of Savannah Harbor, presented in fig. 1, shows the portion
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were determined. These profiles were obtained at half-hour intervals
simultaneously at each of the three stations during a complete tidal
cycle. OSimilar sets of observations were made during a spring tide on
24 Septenber, a mean tide on 8 October, and a neap tide on 15 October
1968. It was anticipated that these data would show directly the nature
of sediment movement into the area; to what extent conditions that pro-
mote aggregation of suspended materials occur there; ang,dufing‘times
that the velocity profile was determined by bed friction, the data
should enable calculation of settling veloéities of aggregates.
Freshwater inflows, winds, and tides occurring during the measure-
ments were also determined. Samples.of bed material were taken to pro-
vide descriptions of the particles, and bed surveys were made to confirm
the occurrence of shoaling in the region. The dates of the field meas-
urements and conditions that prevailed are summarized below. Environ-

mental conditions are presented in detall in Appendix A.

Tide Range Freshwater Winds
Date 't Discharge Avg Direc-

1968 Measurements Rise Fall cfs mph tion

20 Sep Shoal samples - - 6930 8.6 E

24-25 Sep Currents, suspended 8.6 8.7 6650 6.0 E
sediment, salinity

1 Oct Shoal samples - - 7210 5.6 SE

8 Oct  Currents, suspended 7.6  T.7 68L0 5.3 NW
sediment, salinity

11l Oct Shoal samples - - T050 10.9 E

15 Oct Currents, suspended 5.4 5.2 6960 11.7 NE
sediment, salinity

22 Oct Shoal samples —_ — 7950 5.6 SE

Instrumentation and Field Procedures

Deposition of suspended materials and resuspension of deposits oc-
cur at the bed surface. The water velocities near the bed increase rap-
idly with distance from the bed surface. Settling of suspended matter
to the bed is opposed by the combination of vertical components of tur-
bulent flow and a concentration gradient above the bed. The shear stress

on the bed, an important factor in the resuspension of deposits, is
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3/8-in.-diam plastic tube was fastened behind the current meter and the
other end was connected to an electric pump aboard the boat for sampling.
The magnetic switch was connected to the Gurley current meter through a
resistor and via the wire normally connected to the Gurley meter to a
tone generator and earphones. The battery-operated tone generator pro-
vided a tone whenever the bottom sensor was lifted by sediment or when
the current meter contacts closed.

The bottom sensor was taken to sta 125+500 at a time near slack
water when a fluff surface was indicated on the fathometer trace. The
bottom sensor was lowered a number of times, and the depth of the bed
determined by the bottom sensor was compared with that shown by the
fathometer. The agreement was always better than +0.2 ft, which is
about as precise as the fathometer trace could be read. It can be con-
cluded that at slack water the fluff had significant shear strength.

The measuring and sampling procedure was as follows. The instru-
ment string was lowered to an elevation where the tone and then its
absence were noted as the string was lowered and raised slightly, which
indicated that the sensor was at the bed surface. The depth indicator
on the instrument cable winch was then set to 1 ft, the velocity at that
depth was measured, and a water sample was collected. The current meter
and sampling tube intake were then raised successively to 2-, 4-, 8-,
16—, and 25-ft elevations above the bed and to 1.5 ft below the water
surface, as indicated by the depth indicator; and velocities were meas-
ured and samples were collected at each depth. The sampling pump ran
continuously during measurements of each current profile, and time at
each elevation was allowed for the contents of the sampling tube to be
displaced before collecting the sample. These measurements were made
from moored skiffs.

Three to six samples of the shoal were taken at each station with
a modified Trask sampler on dates shown in the tabulation on page 5.
This sampler provided a 2.5-cm-diam core. The top centimeter was re-
moved from each sample for moisture content determination. The remaining
material down to a depth of 1 ft from the top of the samples from each
station was composited, sealed in 1-pt Jjars, and sent to the WES Soils

Division laboratory for analysis.



III. RESULTS OF MEASUREMENTS AND WATER ANALYSES

The sediment transportation processes depend on the character of
the sediment materials, the currents, the water salinities, and the con-
centration of suspended sediment. It is convenient to present the anal-
yses of shoal material first, then the results of the velocity measure-
ments and water sample analyses together for each tide condition. The
raw data from the measurements are included in Appendix C.

Shoal Samples

A total of 16 samples of shoal material, each of which was a com-
posite of several samples, were submitted for analysis of physical prop-
erties. One composite was obtained at each of the four sampling stations
shown in fig. 1 on 20 September, and on 1, 11, and 22 October, which
bracketed the water sampling dates. Details of the physical analyses of
the shoal materials are described in the "Report on Physical, Chemical,
and Petrographic Data," from the WES Concrete and Soils Divisions in-
cluded in Appendix C. Analyses of the physical characteristics of the
samples showed no discernible patterns with respect to location or sam-
pling date and only small variations in composition.

The average clay size particle content (less than 2 microns diam-
eter) was 58% by weight (range 52 to 65%); most of the remainder was silt
size particles, and at most a few percent of the material was fine sand.
This large portion of clay size particles makes the bulk material prop-
erties largely those of the fine particles.

The mineral composition of the clays was reported to be dominantly
kaolin, with minor amounts of clay-mica, montmorillonite, and vermicu-
lite. Minor amounts of quartz, halite, and pyrite were reported with
smaller amounts of plagioclase, potassium feldspar, and possibly cristo-
balite. The clay minerals were poorly crystalline.

The remaining physical data are summarized in the tabulation below,
which was taken from the report on physical analyses, and show the small
variation in physical properties. The cation exchange capacities shown
are unusually high for kaolin, which might be due partially to the large

amount of organic matter indicated in the last column. The presence of



relatively small amounts of montmorillonite can significantly increase

the cation exchange capacity (CEC).

] N zﬁ:ﬁ;:;e Cation Exchange C?pacity % Weight Loss % Organic Con-
Field Identification a Milliequivelents/100 g on Ignition tent (Weight
Station No. Sample No. s Sample Avg for Shoal at 800 ¢ Loss at 375 C)
131 8 1 2.60 35.2 16.4 9.1
5 2.53 39.6 6.1 16.6
9 2.57  32.4 36. 15.5
13 2.58 38.2 n.d.*

128 N 2 2.53 35.9 15.4 9.0
6 n.d. 43.3 6.0 n.d.
10 2.58 33.5 36. 13.9
14 2.62 32.0 16.4

125 8 3 2.54 38.3 17.7 9.4
7 2.52 30.4 6 16.6
11 2.60 k0.0 36.9 15.7
15 2.63 38.8 n.d.

122 px* b n.d. L2.3 n.d. 9.7
8 2.53 38.0 8 15.1
12 2.56  37.6 30.9 16.3
16 2.53 37.6 14.8

* Not determined.
*% It is possible that sample 4 was taken on the south side of the river and samples 8,
12, and 16 were taken on the north side.

Neiheisel12 reported the clay mineral composition of four samples
taken from Savannah Harbor (SA 3, SA 4, SA 5, and SA 6). The average
mineral compositions were kaolin 0.50, montmorillonite 0.44, and illite
0.06. Typical cation exchange capacities for these minerals are kaolin
3 to 15, montmorillonite 80 to 100+, and illite around 40 milli-
equivalents/100 g. The compositions reported by Neiheisel would have
CEC values near the 36 to 39 averages shown in the tabulation above. It
can be concluded that there is an appreciable amount of montmorillonite
in the sediment.

The moisture contents of the top centimeter of the individual core
samples before composites were made were determined to enable the calcu-
lation of bulk density of recently deposited material. The densities

can be calculated according to the relation

m -m l-pl/p}3

-4 22 2 (1)
Ps pp s Py salt
where
Py = density of the suspension in grams per cubic centimeter
pp = density of the particles

10



ms and m_, = masses of the sample wet and dry, respectively

d
Py = density of water with dissolved salts
Conlt concentration of salt in the pore fluid in grams salt

per cubic centimeter of fluid

The fraction (ms - md)/mS is the fraction of the sample that is evap-
orable water by weight. The salinity of the pore fluid in this region
of changing water salinity is uncertain. Aggregates returning from the
areas of higher salinity probably have pore fluid salinities like those
down the estuary, depending on whether they were dispersed and reaggre-
gated during transit. The fraction of evaporable water in the samples
ranged from 0.800 to 0.887. Since it is close to one, only a small error
will result by making the pore fluid the same for all, and a uniform sa-
linity facilitates comparison. The pore fluid density was taken to be
1.025 g/cc, and the average particle density was 2.57 g/cc. The calcu-
lated densities of the average of three or more samples at each of four

stations are plotted in fig. 5.
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Fig. 5. Bulk densities of top centimeter of shoal
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The data in fig. 5 show a slight decrease in density in the region
of most rapid shoaling. The lower densities at sta 122 and 125 probably
reflect shorter consolidation times on the average for sediments included
in the first centimeter. The low densities of all of the samples reflect
their recent deposition.

The characteristics of these sediments important to this study are
the fine particle size, the large surface areas of sediment particles
indicated by the significant cation exchange capacity, and the uniformity
of the sediment material over the study area.

Currents, Suspended
Solids, and Salinities

Measurements at Spring Tide. The data obtained from measurements

made during a spring tide at sta 1304500 are presented in fig. 6. This
station is located downstream from the area of maximum shoaling. The

current data presented in fig. 6a show the predominantly ebb currents
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a. Currents

Fig. 6. Currents, suspended sediments, and salinities at
sta 130+500 during a spring tide (Continued)
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near the water surface caused by the freshwater outflow overriding the sea
water at lower elevations. The currents at elevations nearer the bed have
slightly longer durations of flood than ebb and the flood currents are
slightly stronger than those during ebb. Sediment suspended in the waters
near the bed would travel a greater distance upstream than downstream.

The suspended sediment concentrations shown in fig. 6b have these
striking features. The concentrations of suspended sediment in the lower
2 to 4 £t are very high during the stronger flood and ebb currents near
the bed and fall to low values at times near slack water. These parti-
cles must have settling velocities much greater than those of 2-micron
particles to fall to the bed so rapidly when the current is reduced.

The concentration of suspended material is higher during the period of
stronger flood currents than during ebb, with pronounced increases at
elevations up to 8 ft. This results from the scouring of the bed to a
slightly greater depth and the continued propagation upward by the turbu-
lence of the stronger flood currents. There is an increase in suspended
sediment concentration all the way to the water surface.

Comparison of figs. 6a and 6b shows also that even small variations
of current near the bed have marked effects on the rate of scouring. The
pronounced dip in the concentrations at times near 1930, for example,
corresponds to a small dip in currents at that time. Changes in concen-
trations usually lag slightly behind changes in velocities because of the
time required for the scouring and deposition processes.

The unusually high concentration of suspended sediment shown in
fig. 6b at 0430, when the indicated current at 1-ft elevation was slack,
probably resulted from disturbance of the bed or from an erroneous set-
ting of the current meter and sampling tube intake elevation. Suspension
of similar material was found in the laboratory to have the characteris-
tics of fluid mud or fluff,lo suggesting that this sample was taken in
the bottom material. The concentration at the indicated 2-ft elevation
does not weakly follow the concentration at 1 ft as it does at other
times, further supporting this latter interpretation.

The salinity data in fig. 6c show that higher salinities persist

longer near the bed than do those near the surface. The salinities are
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about 90 degrees out of phase with the currents and are significant at
all depths. The appreciable salinities of the waters 25 ft above the bed
and at the surface indicate that sea water intruding near the bed mixes
upward with the overriding fresh water.

The higher concentrations of suspended sediments scoured from the
bed during flood than those scoured during ebb and the greater distance
of travel of floodwaters near the bed result in net upstream transport
near the bed of sediment materials from sta 130+500.

The data from the measurements made at sta 125+500 during the
spring tide are presented in fig. 7. Sta 125+500 is located in the area
of maximum shoaling. These data show that the surface flows have a much
stronger ebb predominance than those at sta 130+500, and the bottom cur-
rents persisted longer, as well as being stronger, during flood than dur-
ing ebb. The bottom currents are weaker than those at sta 130+500 be-

cause of the widened channel at sta 125+500.
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Fig. 7. Currents, suspended sediments, and salinities at
sta 125+500 during a spring tide (Continued)
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The suspended sediment concentrations (fig. Tb) show deposition
near slack water and resuspension during the strength of bottom currents
with a very marked difference between the concentrations and durations
during flood and ebb. The maximum concentrations are lower than those at
sta 130+500. The sensitivity of the bed surface to resuspension by small
increases in current velocity is shown by the double peak in the sus-
pended sediment concentration during ebb that resulted from the slight
double maximum in 1l-ft ebb currents. The reduced bottom currents caused
by the channel widening reduce the competence of the flood currents for
transporting sediment through this area by reducing both the the amount re-
suspended and the velocity of transport.

The salinities (fig. Tc) show that sta 125+500 is in the mixing
zone, and that the salinities are everywhere adequate to cause cohesion

of suspended clay particles.
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Fig. 8 presents data from the measurements at sta 109+667, located
upstream from the shoaling area. The current data (fig. 8a) show less
ebb predominance at the surface but higher currents at the bed than those
observed at sta 125+500. These higher currents result from the reduced
channel width.

The suspended sediment concentrations (fig. 8b) show suspension
during ebb and flood as at the other stations, with a smaller difference
in the durations and concentrations. The maximum concentrations during
flood at any level at sta 109+667 are lower than those observed at sta
1254500, however., Since the currents are greater, and would scour the
bed to greater depths if easily erodible sediment were there, the reduced
concentration must be due to the limited amount of material to be sus-
pended. The material entering the study region at sta 130+500 was

either deposited in the widened area where the transporting capacity is
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reduced or has mixed with the overlying water and was carried seaward.
The absence of shoals at sta 109+667 supports this interpretation.

The suspended material settled rapidly at sta 109+667 when the cur-
rents diminished, indicating that the material was aggregated.

The salinities presented in fig. 8c show that sta 109+667 was near
the average position of the upstream limit of the mixing zone during
spring tide at the freshwater flow of 6600 cfs.

Measurements at Mean Tide. The data from the measurements made

under mean tide conditions are presented in figs. 9, 10, and 11 for sta
1304500, 125+500, and 109+667, respectively. These figures show that the
currents, suspended solids concentrations, and salinities are similar to
those that prevailed during the spring tide measurements. Several impor-
tant differences are worth noting, however.

The bottom currents at sta 130+500, presented in fig. 9, show a
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Fig. 9. Currents, suspended sediments, and salinities at
sta 130+500 during a mean tide (Continued)

20



SEDIMENT CONCENTRATION, mg/.£

SALINITY, ppt

2000 T T T

1800 |—

1200—

[ JNai
o2FT
AYFT
OB8FT
16 FT

* 25 FT

© SURFACE

TIME OF MEASUREMENT

10/9/68

b. Suspended sediments
50 T T T T T T T T T T T
45— —
40 p— -
35— -
|®1FT
oz2fT
= Ay FT -
OB8FT
¢ 16 FT
25— ® 25 FT —
o SURFACE
200 ‘J
) ol w - e T e I A S G, S S S G
15 16 17 18 19 2 21 22 23 24 1 4 5 6

10/8/68

Fig. 9.

TIME OF MEASUREMENT
c. Salinities

(Concluded)

10/9/68




SEDIMENT CONCENTRATION, mg/.£

CURRENT, ft/sec

T

~
T

FLOOD

£
'

T

[ RNas
o2FT
AYFT
OBFT
¢ 16 FT
® 25 FT
o SURFACE

10/8/68

7

10/9/68 “ _

a. Currents

mIFT
oz fr
AYFT
O8FT -1
$16FT
25 FT
© SURFACE

16 17

Fig. 10.

1 1
18 18 20 21 22 23 24

/
10/8/68 TIME OF MEASUREMENT 10/9/68

b. Suspended sediments
Currents, suspended sediments, and salinities at
sta 125+500 during a mean tide (Continued)




SALINITY, ppt

45

35

30

~N
v

»
o

CURRENT, ft/sec

Wl FT
a2 Fr
- AYFT
08 FT
416 F1
® 25 FT
© SURFACE

TIME OF MEASUREMENT

¢. Salinities

Fig. 10. (Concluded)

HOUR

T 1 1
18 19 20

10/8/68

| 1T
o2f
A Y FT
O 8FT
¢ 15 FT

* B

© SURFACE

a. Currents

Fig. 11. Currents, suspended sediments, and salinities
sta 109+667 during a mean tide (Continued)




SEDIMENT CONCENTRATION, mg/.£

SALINITY, ppt

T T [
/TO 3956 AT 1900

[~
A

TO £549 AT 1902—\

.
oz2Fr
A 4FT
QBFT
¢ 16FT
® 25FT
© SURFACE

17 18 19 20 2

10/8/68

10/9/68

TIME OF MEASUREMENT

b. Suspended sediments

50 T T T T T T T T T T T T T
%F_ —
I‘on— ——
35~ ‘1
®FT
az2rfF1
0 AYFT —
QB8 FT
16 FT
P ®25FT -
o SURFACE
m} _
- .

16

17 18
10/8/68

3 g
10/9/68

TIME OF MEASUREMENT

c. ©Salinities

Fig. 11.

(Concluded)



more marked flood predominance, that is, the durations of flood flows are
longer and the currents during flood are much greater than those during
ebb, and the ebb currents up to 4 ft above the bed are 1 fps or less.

The suspended sediment concentration curves show that almost no
sediment was suspended during ebb flows, whereas significant amounts of
sediment were suspended and transported during flood flows near the bed.
Almost complete rectification of sediment transportation in the upstream
direction was facilitated by the bias in near-bed currents and by the
shear strength of the cohesive bed.

The salinities at sta 130+500, presented in fig. 9c, were slightly
greater near the bed and lower near the water surface during mean tide
than during spring tide.

The data from sta 1254500 in fig. 10 also show, in comparison with
those obtained at this station during spring tide and presented in
fig. T, stronger flood bias in near-bed currents, lower suspended sedi-
ment concentrations, greater differences between the suspended sediment
concentrations during flood and ebb, and generally higher salinities
near the bed.

The data from sta 109+667 show, when compared with the data in
fig. 8, slower currents, lower suspended sediment concentrations, and
higher bottom salinities over a greater portion of the tidal cycle.

The lower suspended sediment concentrations at sta 130+500 and
125+500 observed during mean tide with slightly higher near-bed currents,
compared with spring tide observations, indicate that the supply of sedi-
ment from downstream was limited. Possibly the lower currents associated
with the reduced tidal range or the occurrences of an east wind during
the spring tide and a northwest wind during mean tide conditions altered
the suspension of sediment in the shallow areas.

Measurements at Neap Tide. The data obtained from the field meas-

urements made during a neap tide are presented in figs. 12, 13, and 1k.
These figures show that flood currents were predominant near the bed un-
der this condition at all three stations. They also show that sediments
were suspended during the higher bottom currents and settled to remain

deposited for long periods near times of slack water, with marked
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rectification or net transport upstream at all three stations. The sus-
pended sediment concentrations near the bed were generally lower than
those observed during the mean tide observations. Bottom salinities
were much higher and showed less variation during the tidal cycle than
did the salinities observed during the tides of greater amplitude.
Overview

The data presented in figs. 6 to 14 show that under the hydraulic
and salinity conditions prevailing during tidal ranges from 8.6 to
5.4 ft, and with a nearly constant freshwater outflow around 7000 cfs,
flocculation processes (aggregation and cohesion) determine the mode of
sediment transport in the study area. In every case, the suspended sed-
iment concentration in the 8 ft or so of water immediately above the bed
fell rapidly to low values as the tidal currents near the bed approached
slack. The fine particles found to comprise the shoal (more than half
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less than 2 microns diameter) would not have settled in so short a time
if they were not aggregated to form clumps of appreciable size.

As the material at higher elevations above the bed settles, it con-
tributes to the concentration of the suspension measured at lower eleva-
tions. When the suspended sediment figures are examined for evidence of
settling velocity, decreases of concentration with both time and depth
should be considered. For example, the concentration at 4 ft above the
bed at 1830 in fig. 1lb was sharply reduced at 1900. It is more signif-
icant that the concentrations at 2 ft and at 1 ft are lower at 1900 than
that at 4 ft at 1830. Most of the material at L4 ft settled through the
2-ft level and much of it settled through the 1-ft level in half an hour;
and it settled against the turbulent fluctuations and concentration gra-
dient generated by the slow current shown in fig. lba. A 2-micron clay
particle settles in still water approximately 1 ft in 6 hours.

The suspended sediment concentration at 1 ft above the bed re-
mained close to zero after slack until the near-bed current, therefore
the shear on the bed, was sufficient to resuspend the deposit, indicat-
ing that the bed was cohesive., The bed surface may be regarded as an
aggregation of cohesive aggregates. The shear strength of the bed in-
creases rapidly with depth, however, because of consolidation from the
increasing weight of the skeleton of particles with depth.ll The shear
stress on the bed increases approximately with the square of the near-
bed current, so that when the currents are sufficient to suspend depos-
ited sediment, even slightly faster currents during flood than during
ebb will result in suspension of more sediment during flood and will
cause the upstream transportation shown. The suspended material will
retain much of the aggregation it had on settling and will settle again
at the next opportunity.

The transportation process shown requires for its initiation sus-
pended aggregates of appreciable size, The relevant questions are:

a. How and where did the disperse streamborne particles form
aggregates?

b. Can knowledge of the flocculation processes be utilized to
control shoaling and enhance water use?

The following three chapters are directed toward these questions.
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IV. DISCUSSION

Flocculation Processes

Flocculation of suspended sediment particles requires two processes,
The suspended particles must collide with one another repeatedly, and the
colliding particles must cohere. Waterborne clay mineral particles are
mutually cohesive when either the suspending water is almost devoid of
salts or when the cation concentration in the water is sufficient to over-
come the mutual repulsion of the clouds of cations attracted by the nega-
tive mineral faces.

Typical estuarine sediments are significantly cohesive when the con-
centration of sea salts exceeds 1 g/l.ll Much of an estuary has salt con-
centrations in excess of this value, and once the river waters have mixed
with sea water to this extent the particles are cohesive. Aggregates of
significant size will not form at salinities above 1 g/%, however, unless
conditions exist that cause repeated collisions of suspended particles.

There are three mechanisms of interparticle collision. The most
commonly mentioned mechanism is collision due to the jostling of small
particles by the thermal motions of the suspending medium. This particle
motion, called Brownian motion after its first observer, is easily seen
with a microscope. The frequency of collision on one particle by others,

I , was described by Whitlaw-Gray and others,13 as

_ L4xTn (2)

1 3u

where
k = Boltzman's constant
= absolute temperature
= number of suspended particles per cubic centimeter
B = viscosity of the water

All particles are considered to be the same size in equation 2 for sim-
plicity. The number of collisions on a particle per second at the pre-

vailing temperature is
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I =6 x lO—lzn (2a)

which shows that the number of particles per cubic centimeter must be
large for this mechanism to prevail. If the average particle is 0.25 mi-
cron diameter, for example, the time between collisions for dispersed par-
ticles at a concentration of 200 mg/% is 16 sec.

The second mechanism of interparticle collision is that due to in-
ternal shearing, or local velocity gradients in the fluid. Particles
slightly displaced in the fluid along a velocity gradient will have rela-
tive motion such that the particle in the faster moving fluid will catch
up to the slower particle. Collision will occur if the paths of the par-
ticle centers are displaced less than the sum of their radii. This sum
is called the "collision radius," Rij , between i-size and j-size parti-
cles. The frequency of collisions on a j-size particle, J , by this

mechanism was derived by Sm.ulschowskilh and is

.G (3)

where G 1is the local velocity gradient. The significant feature of
this relation is the strong effect of the collision radius on the fre-
quency of collision. The collision radius for a large aggregate and an
individual clay particle is larger than that between two clay particles,
with the result that in a shearing suspension containing large numbers of
small particles so that n is large, together with relatively few large
aggregates, the large aggregates will appear to gather the primary parti-
cles and grow even larger.

The third mechanism of interparticle collision is the collision re-
sulting from differential settling velocities of particles. Larger par-
ticles settling through a suspension of smaller particles collide with
the smaller particles if the size difference is not too great. The col-

lision on a settling particle per second, H , due to this mechanism is

H = 7ERS .Vn (L)
ij
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where

capture coefficient

v
13

relative velocity between particles
Fuchs shows that the capture coefficient probably falls rapidly as the
ratio of the particle radii diminishes from one but is enhanced when the
Reynolds number, based on the radius of the smaller particle, exceeds

one because of the wake produced by the leading particle. The important
features of this process are the dependencies on R and n . Here again
the large particles gather smaller ones. This mechanism contributes to
the observed rapid clarification of water at slack.

All three of these mechanisms operate in an estuary where the water
is seldom still. Differential settling is probably important only when
the aggregation is already far advanced, and during near slack flows when
the local shearing rate is low. The relative effectiveness of internal

shearing and Brownian motion can be seen from the ratio

d o i

I kT
When G =1 sec-l , and the temperature is that at Savannah Harbor, this
ratio is one for Rij = 0.77 micron . Even at this very low shearing
rate and for clay-size particles, internal shearing is as important as
Brownian motion. As aggregates become larger, or as the shearing rate in-
creases, internal shearing rapidly becomes the dominant mechanism for
collision. Brownian motion can contribute during the initial stages of
aggregation of riverborne particles when the number concentration is
large, but the formation of large aggregates in an estuary is very pre-
dominantly due to internal shearing.

Internal shearing also affects the structure of suspended aggre-
gates and thereby their density and shear strength. It was found during
a rheological studyll that aggregate structures could be described as
follows. Primary mineral particles added one at a time to form a uniform
aggregation are designated a "primary particle aggregate" or a zero-order
aggregate. When sufficient numbers of primary particle aggregates exist

to collide with one another, aggregations of primary aggregates form.
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These are designated first-order aggregates. The first-order aggregates
will include interaggregate pores in addition to the intermineral parti-
cle pores of the primary particle aggregates and will therefore be less
dense. Shear stresses will be concentrated at the interaggregate con-
tacts so that the apparent shear strength of the first-order aggregates
will also be less than that of the zero-order aggregates.

If sufficient numbers of first-order aggregates exist to facilitate
their aggregation with each other, second-order aggregates are formed
that have lower densities and shear strengths than did the first-order
aggregates, and so on. First-, second-, and third-order aggregates were
easily observed in a concentric cylinder viscometer containing concen-
trated suspensions of estuarial sediments. Densities and shear strengths
for each order were calculated.

Aggregates suspended in a shearing fluid rotate; and if the forces
causing rotation exceed the shear strength of the contact area formed on
collision, a bond will not be formed. If the stresses on an aggregate
already formed exceed its apparent shear strength, the aggregate will be
rendered until a lower order having the necessary strength remains. An
aggregate of a given order can exist to some maximum shearing rate beyond
which only Tower orders are resistant. Third-order aggregates typically
withstood shearing rates up to 3 sec—l, second order up to 11 sec—l,
first order up to kO sec—l, and zero order well over 100 sec_l. Higher
shearing rates favor both increased collision frequencies and denser
aggregates.

A freshly deposited cohesive bed surface is one order of aggrega-
tion greater than that of the depositing aggregates, so that it is weaker.
When such a bed is eroded, the weaker bonds (i.e. those formed when ag-
gregates contact the bed) would break first, resuspending aggregates
having the same order of aggregation as those deposited, provided they
could exist in the flows. .

Suspended aggregates are free to rotate, so the stress on their
surface is less than that on a fixed bed experiencing the same velocity
gradient.ll Because of their freedom to rotate and because the shearing

rate in a channel is greatest near the bed, aggregates can be transported
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long distances intact and even grow above beds experiencing shear
stresses that cause scour.

Aggregation by Brownian motion or by differential settling in the
absence of internal shearing requires only that the particles cohere un-
der the very small surface stresses imposed by settling through the water.
Such aggregates would be expected to be weak, to be ragged in shape, and
to have very low density compared with aggregates formed in shear flow.
The shearing rate and the length of time the aggregates are exposed to
a particular shearing rate are major factors in the rate of formation and
the character of the resulting aggregates, including the shoal surface.

Internal Shearing at Savannah Harbor

Internal shearing in partially mixed flows is most evident in veloc-
ity profiles. While steady flow in a tidal estuary exists fleetingly, if
at all, it is useful to examine the current profiles during the strengths

of flood and ebb and to seek

those whose profiles are deter-
mined by bottom friction. Under

Avoage these conditions the steady-flow

Velocity =

- 1D fsec descriptions can assist interpre-

tation. The straight, uniform

channel locations for the current

measurements were sought to ob-

tain such profiles.

ELEVATION ABOVE BED, ft

o
T

In order to provide per-
spective to the data, calculated
current profiies that would be
expected for uniform steady flow

of homogeneous clear water in a

40-ft-deep channel were calcu-

L l
] 1 H

CURRENT, /sec lated and plotted as shown in

fig. 15. These curves were cal-

Fig. 15. Current profiles in a 40-ft
channel with uniformly dense
fluid and hard wall locities from the relation

culated for several average ve-
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2.30u, ZUy

u =-—3;—-log 9.04 5 (5)
where
u = horizontal temporal mean current at 2z elevation above the
bed
u, = friction velocity
k = Karman's constant, taken to be 0.4 for fig. 15

p

v = kinematic viscosity, 0.930 x 10~
The slopes of the curves, A = 2.30u*/k , are noted on each curve.

Velocity profiles measured during ebb flows under mean tide condi-
tions are presented in fig. 16. Figs. 16a and 16b show two apparently
logarithmic profiles: a nearly normal low-velocity profile from the bed
to about 6 ft at sta 130+500 and from the bed to about 4 ft at
sta 125+500, and much flatter but approximately logarithmic profiles
over the remaining water depth to the surface. Fig. 16c shows a similar
profile near the beginning of ebb, with the change in slope at about
2 ft. The slope steadily changed thereafter toward that for uniformly
dense fluid. These peculiar profiles result from variations in water
densities and the combined influences of tidal and freshwater flows.

The salinities observed during these measurements are plotted in
fig. 17. Figs. 1T7a and 17b show that the lower portions of the salinity
profile, corresponding to the low velocity, normal profile portions of
figs. 16a and 16b, have almost uniform salinity. The salinity decreases
to low values with increasing elevation throughout the remainder of the
water above this portion. The continuing decrease in salinity with in-
crease in elevation, and therefore continuing decrease in water density,
inhibits vertical velocity fluctuations and thereby reduces vertical mo-
mentum transfer. The result is that instead of a concentration of most
of the internal shearing near the bed, as it is in typical flows, it is
distributed throughout the upper 30 ft or so of the channel.

The salinity profiles for sta 109+667, presented in fig. 17c, show
a similar profile at 0100, and diminishing salinity at later times until
0300, when the salinity was uniformly that of the freshwater inflow. The
change in current profiles shown in fig. 16c is consistent with the in-

creasing uniformity of the density throughout the depth.
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The salinities near the bed are shown in fig. 17 to diminish with
distance upstream, indicating that the intruding salt water is steadily
diluted by the overriding fresh water. At the same time, the salinities
in the upper region increase with distance downstream, which indicates
vertical mixing of the two layers. The nearly uniform densities near
the bed indicate that flow in that region is well mixed, whereas the de-
creasing salinities above that region indicate slow vertical propagation
of saline water and dilution by the greater flows near the surface.

The stabilization of flow by the density gradient is characterized
by the ratio of inertial forces to gravity stabilizing forces resulting
from the salinity gradient. This ratio is the Richardson number

)
vy (©)
p dz
When Ri is less than 1, the flow is laminar. Ri was calculated from
the data in figs. 16a and 1T7a for the flow 10 ft above the bed to be 2,
indicating that momentum transfer upward is small.

Current profiles measured during the strength of flood flows are
presented in fig. 18. This figure also shows the effects of freshwater
outflow near the surface, which opposes flood tidal flow. The slopes of
the curves are more than twice those for comparable flows of uniformly
dense water, as shown by comparison with the curves in fig. 15.

The salinity profiles during the strength of flood are presented
in fig. 19, and show that the salinity gradients persist through the
water above 4 ft and that the salinities increase almost uniformly as
more saline waters move back upstream. Figs. 19a and 19b show that sa-
line water intrusion is most rapid 2 to 4 ft above the bed during flood.

An estimate of the internal shearing in the flows where bed fric-
tion determines the profile can be obtained from the observation that

the average internal shearing in a fluid, G , is

tdu

G=\[§= E}}_—_ (1)
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where
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energy dissipated per unit volume of fluid

viscosity

=
]

shear at any elevation =z

-
1t

T may be estimated as

T = pui( - g—) (8)

where pui is the shear on the bed, and d is the water depth.

Uy

2 - ko (9)

as conventionally described. Combining equations T, 8, and 9 leads to
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The slopes of the logarithmic curves are A = 2.30u*/k . Substitution
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which is more useful for evaluating
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the velocity profiles.
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values of A shown on the current profiles that unusual internal shear-
ing prevails in the study area and that it is most pronounced during ebb
flows in the large upper portion of the profile with a salinity gradient.
The calculation above is only an estimate even when the profile is
logarithmic because there is no way to determine Karman's constant, k .
Measurements of velocity profiles in a flume by Einstein and Ning Chien,15
using various sizes of sand, showed that at high concentrations of sand
conditions near the bed were altered so that k ranged downward to below
0.2. Ippen16 indicated that increases in the effective viscosity near
the bed resulting from suspended particles would reduce k . In addition
to the effects of aggregate volumes in the viscous layer and the density
gradient due to both salinity and suspended sediment concentration gra-
dients, the cohesive bed undoubtedly deforms in response to pressure
fluctuations, giving rise to the probability that the bed itself damps
the formation of eddies. The lower value of k appears more appropriate
than the 0.4 for the conditions that prevail in the study region.
Bed Shear Stress

Comparison of the lower portions of the current profiles at sta
1304500 and 125+500 during ebb (figs. 16a and 16b) with those during
flood (figs. 18a and 18b) clearly shows the difference in near-bed cur-
rents responsible for the increased scour of the bed during flood. Lines
drawn on figs. 16a and 18a, taken as representative near-bed profiles,
have slopes of A = 0.16 for ebb and A = 0.43 for flood, which compare
with the uniform density profiles in fig. 15. k can be taken as 0.k,
A= 2.30u*/k , and T, = pui , Where LS is the shear on the bed, and
p 1is the water density. These slopes yield bed shear stresses of
0.7 dynes/cm2 on ebb and 5 dynes/cm2 on flood. The aggregate shear
strengths of Brunswick Harbor sediment, which has cation exchange capac-
ity of 30 milliequivalents/100 g compared with 36 milliequivalents/100 g
for Savannah Harbor shoal materialt and is probably slightly weaker,ll

are as follows:

t+ Appendix C.
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Brunswick Harbor Aggregate Properties

Order of Shear Strength Densityt
Aggregation dynes /cm® g/ce
0 3k 1.16k
1 L1 1.090
2 1.2 1.067
3 0.62 1.056

T Density of interstitial water, 1.025 g/cc.

Beds composed of first-, second-, and third-order aggregates would be
scoured by the flood currents, whereas only beds composed of third-order
aggregates would be resuspended by the ebb near-bed currents. The magni-
tude of bed shear stress and its time of occurrence, as well as relative
distance of water travel shown by predominance calculations, are impor-
tant factors determining net transportation of estuarial sediments.

Predominance Curves

Ebb current predominances were determined by planimeter from the

plots in figs. 6-14 as

j.udt

Ebb

( j uat + J' udt)

Ebb Flood

where t 1is time. These ebb predominances are plotted for each tide
condition in fig. 21. The curves from measurements made during spring
tide, presented in fig. 2la, show that sta 109+667 was close to the aver-
age position of the upstream limit of saline water intrusion, and that
bottom currents at the two downstream stations were predominantly in the
direction of flood.

The plot of the mean tide data presented in fig. 21b is similar to
that in fig. 2la, except that sta 109+667 is farther downstream from the
null point and the intercepts on the 0.5 predominance line are closer
together, suggesting that with a reduced tidal amplitude the mixing zone
is more nearly horizontal.

Fig. 2lc presents the predominance curves from the measurements
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made during the least tidal range. The curves from sta 130+500 and
1254500 are similar to the curves for those stations'during mean tide
conditions. The curve for sta 109+667, however, shows greater bottom
predominance than either downstream station. Fig. 14 shows that there
was a very prolonged period of flood near the bed at sta 109+667. No
explanation for this peculiar bottom current predominance during neap
tide is evident from the data.

The predominance curves show that there is a net upstream movement
of water near the bed in the study area which, when combined with the
greater scour of deposited material during flood than during ebb, pro-
vides net upstream movement of sediment in the lower portions of the
flow. The spring tide curves showed also that sta 109+667 was close to
the predominance null point under that tide condition.

Floc Settling Velocities

It is already evident from the suspended sediment concentration
curves presented in figs. 6-1L that the suspended particles have much
greater settling velocities than the individual clay particles whigh
comprise the shoal. An application of steady-state suspended sediment
distribution relations to flows showing logarithmic velocity profiles
yields further information on floc settling velocities.

The concentration, CZ , of uniform suspended particles in an open
channel at elevation 2z above the bed, relative to the concentration at,

say, 1 ft, C , can be found from diffusion theory to be
a

2= (25) (e 2
C d - a z
a

where

a = reference elevation

d = water depth

¢ = w/ku,

w = settling velocity of the suspended particles

Flocs suspended in open channel flow under steady conditions would settle
to the zone of highest shearing close to the bed where they would be

rendered if their structure were too high an order, and diffused upward,
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would grow and settle again. Repeated experience would tend to make the
aggregates similar, and equation 12 would apply.

Suspended sediment concentrations measured during periods when the
velocity profiles were logarithmic were plotted so that distributions de-

scribed by equation 12 would fit a straight line, as shown in fig. 22.

10 —

™7 Ty
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Fig. 22. Plot to find settling velocities of flocs

The slopes of the best straight-line fit were then used to find the set-
tling from the slope of the velocity profile, A , and values of k of
0.4 by means of the relations wu, = kA/2.30 , and w = ku,z , so that
W= CAk2/2.3O . Some of the plots had better fits to straight lines
than that in fig. 22, but there were fewer profiles than anticipated
that would meet both the criteria of logarithmic velocity profiles and
log-log plots that fit equation 12.

The settling velocities calculated from the best fits under each
tide condition are summarized below. These few settling velocities ap-

pear to fall in groups. Five fall between 0.012 and 0.017, averaging
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0.015 fps; seven fall between 0.028 and 0.047, averaging 0.036 fps; and
four fall between 0.084 and 0.151, averaging 0.11 fps. Brunswick Harbor
first-order aggregates have a density of 1.090 g/cc when suspended in
water having a density of 1.025 g/cc. The Stokes settling diameters cal-
culated from these densities are 1.0, 0.6, and 0.4 mm for settling veloc-
ities of 0.11, 0.037, and 0.015 fps, respectively. These aggregates
should be visible to the naked eye. The diameters would have been half
those calculated above if k = 0.2 had been used to calculate the set-

tling velocities.

Agegregate Settling Velocities, fps

Station Spring Tide Mean Tide Neap Tide
109+667
Ebb 0.028 0.038 0.030
Flood 0.033 - 0.012
1254500
Ebb 0.01k4, 0.013 0.091 0.084
Flood 0.033 0.017 0.0k4T
130+500
Ebb 0.151 - 0.016
Flood 0.098 — 0.0ko

Note: Aggregate settling velocities were calculated
from equation 12 using k = 0.L4 .

An 0.6-mm first-order aggregate contains about half a million clay
particles. Even though there is a large amount of scatter in these data,
it can be concluded that large aggregates have formed.

Suspended Sediment Concentration

All three processes that cause collision of suspended mineral par-
ticles have rates of collision directly proportional to the suspended
sediment concentration by number. The concentration of suspended par-
ticles by welght in the study area ranged from tens of milligrams per
liter to grams per liter levels. A clay mineral particle weighs about
10-11 to 10—12 g, and particles dispersed in river water at a concen-
tration of 100 mg/%, for example, would have a number concentration

7

from 10" to 10 particles per cubic centimeter. Collisions by

> to 6 x 10‘h

Brownian motion would occur initially at I =6 x 10
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per second, or one collision every 4.5 to 0.45 hr for this range in num-
bers. An aggregate containing half a million clay particles would not
form very rapidly.

If the shearing rate averaged 10 per second, then for Ri'

- J
3 to 10 2 per second, or say at most, one every

= 2 microns, J = 10~
100 sec. Such aggregation would still not account for the formation of
large aggregates directly from material suspended in river water unless
the aggregation took place over a long period of time. Higher concentra-
tions by number, and at least a few large "seed" flocs that would provide
large values of Rij , are required to form aggregates at rates that .
would account for shoaling where river and ocean waters mix. The feed-
back mechanism demonstrated by the data presented in figs. 6-14 provides
both high concentrations and large collision radii, and the high shearing
rates distributed over a large volume in the channel provide extended
periods during which the disperse riverborne particles can be gathered by
the aggregates returning from downstream. If the returning aggregates
were 20 microns in diameter, for example, the collision radius with a
dispersed clay particle would be approximately 11 microns, and two
collisions per second would occur on each aggregate. Larger aggre-
gates, greater numbers of aggregates, or increased shearing rates would
increase the collision frequency.

This chapter presented the factors that determine the rate of
aggregation of suspended particles and showed that conditions in the
waters of the study region are such that cohesion, frequency of colli-
sion, and times for collisions to occur are sufficient for the formation
of largé aggregates. The settling velocities calculated from the sus-
pended sediment concentration profiles are much greater than those of
individual particles that comprise the shoals and show that aggregates
are formed from a large number of collisions. These calculated settling
velocities are consistent with the rapid clarification of the waters
during times near slack that were shown in Chapter III.

The aggregates settle to form the bed surface. The shear strength
of the bed surface depends on the shear strength of the cohesive aggre-

gates and their susceptibility to crushing or particle rearrangement
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with depth of overburden. The properties of the suspended aggregates,
therefore, determine the shears necessary to resuspend thin deposits
formed when they settle to the bed.

It can be concluded that at Savannah the settling velocities of
the suspended material and the ease of resuspending deposited material,
and therefore particulate material transport and accumulation, are de-

termined by flocculation processes.
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V. TRANSPORTATION AND SHOALING PROCESSES IN THE STUDY AREA

The field data are combined in this chapter with the concepts pro-
vided in the discussion to form a qualitative description of the sediment
transportation processes in Savannah Harbor. A schematic diagram summa-
rizing these processes is presented in fig. 23, which represents the
freshwater-saltwater mixing zone with dispersed suspended sediment enter-
ing in fresh water from the left and loss of suspended sediment to the
ocean on the right. Neither the sediment input nor sediment loss is im-

plied to occur at steady rates.
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———- —————
DISPERSED _ -
——- —
RIVERBORNE _ —  MIXTURE OF NEW RIVERBORNE SETTLING
— —_— PARTICLES & RETURNING
SEDIMENT - AGGREGATES. AGGREGATES
— A PORTION OF COLLECT FINE PARTICLES.
AGG'S DIFFUSE ( ‘ l t ‘
-
UPWARD, & CIRCULATEN_ | { ‘ l l l =
Pd

AGGREGATES
7 1 7 7 7 7 72 777777 /’/’/’/‘/4'/'/'/'/ 7 /'/'/'/l/ 77 /77 77

— HIGHER CONC., LOW BED——
SHEAR, & CONSOLIDATION

DURING SLACK PRODUCE REGION OF FRESH & SALT
SHOALS WATER MIXING, & ENHANCED
SHEARING

Fig. 23. Transport and shoaling processes in the study area

It is convenient to consider first the aggregated suspended sedi-
ment returning upstream with tidal currents shown at the lower right in
fig. 23. These sediments originate from shallow areas disturbed by wind-
generated waves, from dredge spoil disposal, or from other tributary
streams. The erodible deposits in shallow areas accumulate during
periods of storm runoff when river turbidity can be observed to extend
over these areas, that is when the mixing zone extends over the shallow
areas, as well as depositing from more usual flows as will be described

subsequently. When suspended aggregates reach portions of the estuary
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having a salinity gradient, the upstream predominance of near-bed cur-
rents assures their upstream movement as long as bed shear stress is
sufficient to keep them suspended.

The aggregates rapidly accumulate on the bed during each time near
slack water that the near-bed currents fall to magnitudes that permit
deposition. The burden of the particles deposited last on the aggregates
near the bottom of a new deposit will cause the collapse of the lower
aggregates' structure when the deposit is more than a few centimeters
thick,ll(p'77) and the shear strength of the deposit will increase with
depth. The depth to which the new deposit scours when the currents in-
crease after slack will then depend on the bed shear stress imposed by
the flow. If the currents during both flood and ebb are sufficient to
scour all of the new deposit, the net movement will be determined approx-
imately by current predominance. However, if the shear stress during ebb
is less than sufficient to suspend all of the newly deposited material,
there will be a portion of the material resting on the bed during ebb,
which will be resuspended and transported during the predominant flood
flows. The net rate of upstream movement will be greatly enhanced. The
occurrence of this process in Savannah Harbor is shown in figs. 6-14. Tt
is important to recognize the effect of the amount of material deposited
during slack periods on this process.

Continuing deposition will occur when the bed shear during flood,
as well as during ebb, is insufficient to resuspend all of the material
deposited during preceding slack periods. The actual shear necessary
depends on the amount of material deposited. This situation would occur
immediately downstream from the toe of average salinity intrusion in a
uniform channel, where bed shear is lowest, unless the material had al-
ready been removed from the flow downchannel, The maximum rate of shoal-
ing in Savannah Harbor, however, occurs near sta 125+500, which is well
downstream from the toe., Shoaling there results from the markedly re-
duced bed shear stresses, relative to those upstream or downstream, re-
sulting from the widened channel together with the large amount of mate-
rial deposited during each near-slack water period.

A large portion of the sediment moving upstream intermittently in
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suspension moves right on through the toe of the salinity intrusion,
mixes with the fresh water and its suspended sediment load, and is car-
ried seaward up over the saline intrusion in the large portion of the

channel volume having a vertical salinity gradient and higher than normal

rates of internal shearing.

The salinity profiles show a lower zone with nearly uniform salin-
ity and a vertical gradient toward lower salinities in the zone above.
The boundary between these zones is fuzzy but discernible. This bound-
ary moves upstream and downstream with the tides and has a downward slope
in the upstream direction. There is a net upward movement of saline
water at this upper boundary because, as the fresher and saline waters
mix, the salinity and density decrease. There is continuing displacement
of the less saline water by more saline water.

A nearly horizontal lens of high concentrations of suspended sedi-
ment on the salinity boundary near the mouth of the Mississippi River,
which suffers very little disturbance from tides, is evidence of this
phenomenon. Those aggregates moving upstream near the bed or formed at
the interface whose settling velocities are comparable to the upward cur-
rents are held in this zone of upward moving water as are flocs suspended
in a sludge-blanket upflow clarifier. Smaller particles moving through
this region are often "caught" by the suspended particles, the suspended
particles themselves combine, until the settling velocity exceeds the up-
flow velocity component and the particles fall through the saline zone
to deposit.

The observation of flood predominance near the bed is further evi-
dence of net upflow through the upper fuzzy boundary of saline water.
This upward current transports preferentially aggregates having low set-
tling velocities and carries them into the zone where appropriate shear-
ing rates, disperse riverborne particles, and considerable time are
available for their growth. They are transported seaward in the upper
regions.

When these particles are transported into the broader areas of the
estuary where bed shears are often low, or if their settling velocity

has increased to exceed the upward component of mixing water, these
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aggregates settle into the saline region where they are again transported
upstream and continue through the cycle.

The processes described herein are rate-dependent processes, The
rates of aggregation are iﬁportant relative to the time for aggregation
to occur. Since material can go through the cycle again and again, prob-
ably forming and partially breaking aggregates several times, the avail-
able time can be long. The rates that determine whether an estuary with
appropriate hydraulic conditions experiences the processes described
herein are the relative rates of suspended sediment supply and of sedi-
ment loss from the system. When the rate of supply exceeds the rate of
loss downstream, say, to the ocean, the concentration in the recycling
system will increase until the deposits formed during slack water are
thick enough to leave shoal material at the rate sediment is supplied.
Sediment brought in by storm flows can deposit in shallow areas when the
mixing zone moves down to those areas or when aggregates are transported
from the mixing zone to those areas, then can be continually resupplied
to the process when resuspended by wind-generated waves. The rate of
sediment loss from the system, and hence alleviation of shoaling, can be
augmented by disposing of dredge spoil outside the recycling system.

Seaward transport from the system will be enhanced if high concen-
trations of suspended sediment can be prevented from moving upstream to
the extent that the low concentration inhibits aggregation. Every fea-
sible means to minimize the suspended sediment concentration in shoaling
areas should be considered.

The recycling processes described herein account for the turbidity

maxima observed in estuaries.
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VI. METHODS FOR ALLEVIATING SHOALING AT SAVANNAH HARBOR

Extensive field and model studies of Savannah Harbor have already
resulted in plans for reducing the cost of maintenance. The methods of-
fered herein are presented to illustrate briefly the application of in-
formation obtained during this study.

Keep the Sediment Moving

The importance of bed shear stress to the upstream movement of
sediment is evident from the data obtained during this study. If the
shear stresses can be made to equal or exceed those that suspend the
sediment material during its transport into the shoaling area, the sedi-
ment can be kept in motion and increased loss from the recycling system
can be obtained by tidal diffusion. Carquinez Strait in the San Fran-
cisco Bay system is an example where shoaling does not occur in the chan-
nel wherein mixing occurs. The aggregates formed there deposit at un-
usually high rates in contiguous areas where the bed is protected from
shear and where enhanced aggregation rates are provided by flow through
piles. Increased bed shear along the entire channel usually cannot be
achieved without major works that increase tidal flows, but locally re-
duced bed shear stresses, such as those in the turning basin in Savannah
Harbor, can be increased by making the channel width uniform and by modi-
fying the channel to reduce energy dissipation. The turning basin could
be moved up beyond the mixing zorne. Channel banks could be made steeper
and side-channel shallow areas eliminated. The effects of such channel
modifications on bed shear stress can be evaluated with hydraulic models,

Minimize Suspended
Sediment Concentrations

The center role of suspended sediment concentration in deter-
mining rates of aggregation and shoaling is amply demonstrated. Means
for minimizing suspended sediment concentrations include the adherence
to "clean" dredging methods and spoiling outside of the area from which
sediment can reenter the process. Tributaries that carry large amounts
of suspended sediment might be diverted to join the ocean elsewhere if

their flows through the harbor are not needed to carry wastes.
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Reduce Internal
Shearing Above the Bed

Areas immediately downstream from pile-supported structures shoal
rapidly because internal shearing is enhanced in flow around piles>and
because bed shears are reduced in the region. Large aggregates are
formed quickly from small ones at moderate concentrations of suspended
sediments. Flow through such pile structures can often be minimized by
orienting the structure appropriately and by designing the structure
with minimum supporting piles. Internal shearing that results from sa-
linity gradients does not appear amenable to reduction.

The benefits of these methods in individual cases must be compared

with their total cost to determine their desirability.
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VII. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY

This field study in Savannah Harbor, a partially mixed estuary,
yielded information leading to the description of sediment transporta-
tion and shoaling processes presented in Chapter V. The following con-
clusions can be drawn from the field data, the discussion of relevant
processes, and the description presented in this report:

a. Aggregation processes enhance the settling velocities of sus-
pended particles and determine the physical properties of the sediment
bed surface. Aggregation processes are central to the transportation
processes leading to the formation of shoals in Savannah Harbor.

b. Repeated collision of suspended cochesive particles resulting
from internal shearing in the flow, particularly in the large volume of
enhanced internal shearing caused by the salinity gradient in the mixing
zone, is the dominant mechanism that produces aggregation.

c. The rate of aggregation depends on the concentration of sus-
pended sediment, very strongly on the heterogeneity of the suspended
particle sizes, and on local shearing rate.

d. The sediment moves into the region of high shoaling rates with
tidal currents from downstream with the more saline waters near the bed.
The material deposits during the period of low currents near the times
of slack water, then is partially or entirely resuspended as the cur-
rents increase. Bottom flood predominance is one factor causing net up-
stream movement of sediment.

e. When the new deposit formed during slack periods is more than
a few centimeters thick, the weight of the overburden crushes the lower
aggregates in the new deposit and thereby enhances their shear strength.
The shear strength of such a deposit increases with depth. Under this
circumstance, stronger flood currents, which apply greater shear stress
to the bed surface, erode the new deposit to a greater depth than do the
weaker ebb currents. Some or all of the sediments are suspended and
transported by flood currents and rest on the bed during ebb. This

process greatly enhances the rate of sediment movement into the shoaling

area.
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f. Sediment accumulates to form shoals wherever the bed shear
stresses during both flood and ebb are insufficient to resuspend all of
the material deposited during the preceding slacks. Both the thickness
of each deposit, which determines the shear strength profile of the de-
posit, and the shear stresses applied by the flow determine the shoaling
rate in these areas.

g. BSome of the aggregated sediment moving upstream near the bed
with the more saline water moves through the landward limit of saline
water, mixes with the disperse riverborne particles, and is carried sea-
ward over the saline intrusion through the large volume having a verti-
cal salinity gradient and enhanced internal shearing. These returning
aggregates greatly increase the rate of aggregation of riverborne sus-
pended particles. Suspended sediment also moves vertically upward from
the saline water zone as the saline waters mix with less saline water.

h. Aggregated suspended particles settle downstream and in shallow
areas where they reenter the upstream movement, or they rest until resus-
pended by wind-generated waves and then reenter the upstream movement.

i. Most of the new information obtained during this study was that
from the measurements made within 8 ft of the sediment bed surface, and
was obtained by accurately positioning the sampling intake and current
meter above the sediment bed. It can be concluded that accurate posi-

tioning of such equipment relative to the sediment bed surface is very

desirable for measurement and sampling of flows in estuaries.

Many interesting features in a natural system as complex as the
Savannah Harbor estuary could be studied further. Those areas of further
study needed to improve knowledge that would lead to reduced maintenance
costs are presented here.

a. The shear stress applied by the flow to the bed is an important
factor in the formation of shoals. Our present ability to calculate the
shear stress from a velocity profile is limited to those cases where the
fluid density is uniform. A means for calculating shear stresses when
the velocity profile is affected by a vertical density gradient would be
useful for design to achieve the necessary bed scour. In terms of the

logarithmic description of velocity profiles we need to know the
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relations between density gradients and Karman's constant k at the
strength of flow.

b. Quantitative descriptions of the sediment transportation proc-
esses are needed to evaluate the benefits of proposed remedial measures
on channel and harbor maintenance and to predict changes in suspended
sediment concentrations resulting from water inflow modifications and
the effects of such changes on water quality and on aquatic biota. The
velocity and salinity profiles, together with the transportation mecha-
nisms described, suggest that a two-layer numerical model might repre-
sent the hydraulic portion with sufficient accuracy, and that the shear |
strength profile of the bed might be simply represented. Empirical de-
scriptions of aggregation and deposition obtained from flume studies
should be useful, and an accounting procedure might be devised to de-
scribe the shoal surface.

¢c. An estuary is a transition between unidirectional freshwater
flow and a tidal ocean. All that transpires in this transition is af-
fected to some extent by conditions at both ends. During the last few
years suspended sediment infiows to estuaries have been measured, but
almost no information is available on rates of loss of sediment from
estuaries. Direct measurements would be very desirable. Indirect cal-
culations using a numerical model together with measurements of sediment
concentrations inside the estuary are less desirable but perhaps would
be achieved more easily.

d. This study involved only one estuary. Savannah Harbor is a
partially mixed estuary and is typical of many; but differences in mor-
phometry, in mineral and organic content of the sediment, in tidal
ranges, and in temporal changes in freshwater and sediment inflow pro-
vide different conditions. Additional studies of this kind are needed

to enlarge our knowledge of estuarial sediment transportation.
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APPENDIX A

FRESHWATER INFLOWS, TIDES, AND WINDS
DURING FIELD STUDIES
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UNITED STATES DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY

WATER RESOURCES DIVISION
2-1985.00 SAVANNAH RIVER NEAR CLYO, GA.
USE RT 05

S DATE TMAX MAX MIN MEAN EQ-GH DATUM SHIFT MEAN Q

9-04 2400 6.03 5.99 5.98 5.99 7390
9-05 1600 6.12 6.03 6.09 6.09 7510
9-06 0100 6.12 6.00 6.08 6.08 7490
9-07 0100 5.99 5.86 5.92 5.92 7310
9-08 2400 5.98 5.80 5.90 5.90 7280
9-09 1500 6.10 5.99 6.07 6.07 7480
9-10 0100 6.08 6.00 6.05 6.05 7460
9-11 0500 6.01 5.90 5.95 5.95 7350
9-12 0100 5.90 5.78 5.84 5.84 7220
9-13 0100 5.78 5.73 5.75 5.75 7120
9-14 0100 5.73 5.72 5.73 5.73 7100
9-15 2400 5.86 5.74 5.79 5.79 7160
9-16 1200 5.90 5.83 5.88 5.88 7260
9-17 0100 5.82 5.63 5.73 5.73 7110
9-18 0100 5.63 5.51 5.57 5.57 6930
9-19 2300 5.52 5.49 5.50 5.50 6850
9-20 1500 5.59 5.53 5.57 5.57 6930
9-21 2300 5.66 5.58 5.61 5.61 6970
9-22 1500 5.77 5.68 5.74 5.74 7110
9-23 0100 5.73 5.44 5.60 5.60 6960
9-24 0100 5.43 5.25 5.32 5.32 6650
9-25 0100 5.25 5.22 5.23 5.23 6560
9-26 2200 5.24 5.21 5.22 5.22 6540
9-27 2400 5.33 5.24 5.28 5.28 6610
9-28 2400 5.45 5.33 5.37 5.37 6710
9-29 2400 5.82 5.47 5.63 5.63 6990
9-30 1200 5.94 5.83 5.91 5.91 7300
PERIOD 6.12 5.21

Water data for September 1968.
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UNITED STATES DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY

WATER RESOURCES DIVISION

2-1985.00 SAVANNAH RIVER NEAR CLYO, GA,
USE RT 05

S DATE TMAX MAX MIN MEAN EQ-GH DATUM SHIFT MEAN Q

10-01 0100 5.91 5.72 5.82 5.82 7210
10-02 0100 5.71 5.49 5.61 5.61 6970
10-03 0100 5.48 5.40 5.43 5.43 6770
10-04 0100 5.40 5.37 5.39 5.39 6730
10-05 0100 5.37 5.34 5.35 5.35 6690
10-06 2200 5.41 5.34 5.38 5.38 6710
10-07 2400 5.47 5.41 5.43 5.43 6780
10-08 1700 5.54 5.46 5.49 5.49 6840
10-09 2200 5.64 5.54 5.60 5.60 6960
10-10 1900 5.67 5.64 5.65 5.65 7020
10-11 1700 5.72 5.65 5.68 5.68 7050
10-12 0100 5.70 5.62 5.67 5.67 7040
10-13 0100 5.62 5.56 5.58 5.58 6940
10-14 2100 5.62 5.57 5.60 5.60 6960
10-15 0200 5.62 5.58 5.60 5.60 6960
10-16 2400 5.67 5.58 5.60 5.61 6970
10-17 2300 5.84 5.68 5.77 5.77 7150
10-18 1600 5.91 5.84 5.89 5.89 7280
10-19 2300 5.95 5.86 5.91 5.91 7300
10-20 2400 6.11 5.96 6.02 6.02 7420
10-21 2400 6.41 6.13 6.26 6.26 7720
10-22 1500 6.48 6.41 6.45 6.45 7950
10-23 0100 6.46 6.39 6.43 6.43 7910
PERIOD 6.48 5.34

Water data for October 1968.
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LOCAL CLIMATOLOGICAL DATA

U. S. DEPARTMENT OF COMMERCE - C. R. SMITH, Secretary

SAVANNAH, GEORGIA
TRAVIS FIELD

DCTOBER 1968

ENVIRONMENTAL SCIENMCE SERVICES ADMINISTRATION -- ENVIRONMENTAL DATA SERVICE
Latitude 32° o8 'N Longitude g3° 12" y Elevation (ground) 46 fU Standard time used:  paASTERN
Temperature (°F) Weather types (Snow,| Precipitation | AVS- Wind Sunshine | Sky cover
shown by code | Sicet, station (Tenths)
1-9 on dates of | Total |Snow, Brew Fastest
of occurrence |iceon| (water | sleet’| 1< -~ 3 mile
= 2 123 456 789 d r (In)) <1 g 4
© - O 87 equiva- [ (In) | ... sl & 5~ ° e
E E E| JE| B¢ g 2| at | leny = =2 @ e | 82 Lle
3 H 8 | 22|88 o8 3 i en Elev. S§EE | e~| ~| 8 | ZE |28 (s |EZ
E E R 5S¢ ® &s £ b7am (In.) =3 =0 | @< |[gd| S =% |EZ |8 |28
el £ g § |2e|5a| 5% ¥ st . F SQ|SS(35 8| 22 |8 |B%|EE|.
&l 3 S : | 88|28 &8 g3 i i et G2 B 26 |%e] £ | B2 |55 (58|22 |8
= = < E | <9 £ | czf 220 &5& | (In) msl g8 | <E|RFE A | £5 (&5 |33 |EE(B
1 2 3 4 S 6 7 8 9 10 1 12 13} 14 15 16| 17 18 19 20 | 21 )22
1 88 59 T4 1 61 [} 1 8 0 [} 030,06 |20 | 4.1 | 5.6 | 12| SE 9.2 78 2 1 1
2 88 59 74 2 62 0 1 [ 0 [} 0(30.04 |20 3.8| 5.0 14 S 11.8| 100 3 2 2
3 904 60 75 3 60 0 1 8 0 1] 030,04 (22| 5.9| 6.6 14 1 10.8 92 5 4 3
4 84 56 70 -1 56 [} [} 0 0(30,00(33 | 4.1 | 8.6 146 N 10.4 88 7 5 4
5 77 52 65 -6 43 0 0 0 0(30,10 |06 (1043 [10.8( 17 13 10.3 (L] 5 5 5
[} 8l 57 69 -2 60 [} 8 0 0 0(29.98 (12| 6.5| 9.2 | 18 SE LX) 37| 10 9 6
7 87 71 79 8 69 0 1 8 0 T 0129.90 |23 | 5.0 6.3( 15 W 9.7 83 9 9 7
[} 89 68 kil 9 69 0 23 8 0 «90 0/29.98 |03 «7| 53| 21| NW 6.1 52| 1o 9 8
9 7 68 73 3 65 4] 1 8 0 T 030,03 (04| 9.7|10.2| 17| NE 2.1 18| 10 (10 ?
10 84 66 78 5 64 0 8 0 T 030,02 (05| 8.1 94| 14 E T.6 66 9 7|10
11 85 65 75 6 65 0 1 8 0 T 0/30.09 ({07 |10.4|10.9( 17 € 10.0 [ 7 6 |11
12 85 66 76 ? 64 0 8 o] T 0(30.1508 | 6.4 7.3 | 19 E 10.5 91 8 7112
13 82 65 T4 5 62 0 8 0 T 030,11 (07| 46| 5.5 12 E 7.1 61| 10 8 (13
14 85 62 T4 6 61 0 0 0 030,08 (06| 8.7| 9.5 15 E 11.5( 100 1 1114
15 83 65 T4 6 64 [+] 8 0 0 0(30.05 |05{11¢3 (11.7| 17| NE 7.8 68 8 7115
16 75 69 72 5 68 0 13 8 0 64 0(29.98 |05 8.8 9.1 17 E 0.9 8} 10 (10 |16
17 82 T2 17 10 70 0 8 0 «63 0(29.901{09| 8.7 | 9.5| 26! SE 3.6 3110 |10 |17
10 81 T2 17 10 72 0 3 8 0 o4l 0(29.84 {10 6.9 | 8.3 | 17} SE 0.6 5| 10 (10 |18
19 a3 T2 70 12 71 0 8 o] «09 029,72 (01| 4.6 | 8.5| 17! NW 0.3 3| 10 |10 {19
20 82 58 70 4 59 0 0 0 0(29.08 (35| 7.1 | 7.3 12 N 9.2 82 2 4 |20
21 79 51 65 -1 50 0 0 0 030,01 06| 2.7 | 5.2 11| NE 9.9 89 8 6|21
22 82 51 67 2 55 0 0 0 0(29.95|10| 2.6 | 5.6| 11| SE 8.3 74 3 3 )22
23 83 59 71 6 62 0 2 8 0 0 0(29.86 (18| 3.0| 4.5 13| SE 5.2 46 9 6|23
26 81 61 71 6 63 0 23 8 0 86 0(29.79 |14 6| 4,2 27 L] 2.8 25 9 9 |24
25 n 47 59 ~5 43 6 0 0 0(29.80 (29| 9.8(10.2( 22 L] 10.5 95 2 1]25
26 66 39 53 | ~11 33 12 [} 0 030,04 (31| 7.7| 8.6 15| Nw 11.1| 100 0 0 |26
27 71 s 53 | -11 38 12 0 0 0(30,09 (19| 3.6 4.2} 12 s 11.1| 100 0 0 |27
20 T4 46 60 -3 39 5 0 o 0{29.01 (26| 9.5(11.1( 26 w 11.0| 100 1 1|28
29 63 37 50 { =13 33 15 0 0 0129.92 (29| 6.0| 7.2 14| NW 11.0| 100 0 0 {29
30 o8 354 52 | -11 s 13 0 0 0(30,08 (32| 3.6( 5.2 9 N 10.9| 100 0 0|30
31 73 37 55 -7 40 10 ] 0 0130.20(07] 1.9] 3.6 9| SE 10.9] 100 0 0 [31
Sum | Sum ——| Total [Dep. | Temperature:” | Total |Total F the month: Total % [Sum [Sum
— 73] 26| Number of da S 3.53 029,98 [05] 2,1 7.5] 271 W | 246,6]| for [178 160
Avg, Avg | Avg | Dep.[Avg. [Season to dateIMax. [Max M .|_Dep. |—— — Date: 264 | Posible | month |[AvE. [AVE.
. 57.4 &8, Te 87 [Total | Dep. | <32 [>904 58 — —— |———{ 352.9 To| 5.7 5.2
« Extreme for the month. May be the 73] e o 1] o]0 Greatest in 24 hours and dates Greatest depth on ground of
last of more than one occurrence. Precipitation Snow, Sleet snow, sleet or ice and date
~ Below 2ero temperatures or negative departure from normal. 1,16 |16-17 []
T In columns 9, 10, and 11 and in the Hourly Precipitation $ 3 70° at Alaskan stations. + Also on an carlier date, or dates.
table indicates an amount too small to measure.
— visibility % mi
X Hoavy fog — visibility % mile or Jess HOURLY PRECIPITATION (Liquid in Inches)
. A. M. Hour ending at P. M. Hour ending at )
16 11 2 3[4 576 718 6710 uji2 1] 2 374 56 718 9110 wl12 61
2 2
3 3
4 4
5 5
6 6
7 T 7
] T 57 .03{.18 .07/ .05 T 8
9 T T T 9
10 T 10
11 T 11
12 T 12
13 T T 13
14 14
15 15
16 O T T 05 T «01j .02 T .02 «01 «09 .06 .06 .01 13| .03 ,04/ .08 .03|T T «01 | 16
17 .04 .03 ,08 .04 .02/ .01 ,13| .08 .18 T T T 17
10 06 21T T T T T 111 .03 T T T T 18
19 T 05 04T 19
20 20
21 21
22 22
23 23
24 +85| .01 T T T T T 24
25 25
26 26
27 27
20 28
29 29
30 30
3l 31
Data in columns 6, 12, 13, 14, and 15 are based on 8 observations per day at 3-hour intervals. Wind directions are those Resull
from which the wind blows. Resultant wind is the vector sum of wind directions and speeds divided by the number of | wind
observations. Figures for directions are tens of degrees from true North; ie., 09 = East, 18 = South, 27 = West, LE |82 22 - _
36 = North, and 00 = Calm. When directions are in tens of degrees in Col. 17, eatries in Col. 16 are fastest observed 32 |8E -y g z
1-minute speeds. If the / appears in Col. 17, speeds are gusts. Any errors detected will be corrected and changes in LB 2E F gﬂ
summary data will be snnotated in the annual Summary if published. i 5121 2¢
01} 4 5.2101| 2.3
Subacription Price: Local Climatological Data $1.00 per year including annual Summary if published. Single copy: 04| 5 5,435 2.4
10 cents for monthly Summary: 15 cents for annual Summary. Checks or money orders should be made payable 07! & 6.4(03] 3.5
and remittances and correspondence should be sent to the of Dx U.S. G Primi- . .
ing Office. D. C. 20402. 10| 8 8.8 (04| 3.9
13| 6(29.98( 77| 65 50| 56 [11.1 06| 1.8
1 cenify that this is an official i Science Services Administration. and is compiled from 16| 6(29.95| 761 64| 52| 56 |10.9 |11 | 3.3
records on file at the Nationat Weather Records Center, Asheville, North Carohna 28801, 19] 5|29.97.| 68| 62| 71| 58| 6.9(10| 2.5
ﬁ/ 22| 430,00 64| 60| 80 ) 58| 5.8]04] 1.1
USCOMM—ESSA—ASHEVILLE 200

Director. National Weather Records Center
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ATIONS AT 3-HOUR INTERVALS
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REFERENCE NOTES

CEILING COLUMN-—

UNL indicates an unlimited

ceiling.

CIR indicates a cirriform
¢cloud ceiling of unknown

height.
WEATHER COLUMN—
* Tornado
Thunderstorm
Q  squall
R  Rain

RW Rain showers

ZR Freezing rain

Drizzle

ZL Freezing drizzle
now

SP  Snow pellets
IC  Ice crystals
SW  Snow showers
SG Snow grains
E  Sleet

A Hail

AP Small hail

F  Fog

IF  lce fog

GF  Ground fog
BD Blowing dust
BN Blowing sand
BS Blowing snow
EY Blowing spray

Smoke
H Haze
D  Dust

WIND COLUMNS—

Directions are those from
which the wind blows, indi-

cated in tens of degrees
from true North; i e.
for East, 18 for Soutl
for West. Entry of 00

the direction column indi-

cales calm.

Speed is expressed in knots;
mullifl) by 1.15 to convert

to miles per hour.

ADDITIONAL DATA

Other observational data con-
tained in records on file can
be furnished at cost via micro-
film or microfiche copies of
the original records. Inquiries
as 1o availability and

costs should be addressed to:

Director

National Weather Records Center

Federal Buildin
Asheville, N. C. 28801




LOCAL CLIMATOLOGICAL DATA

U. S. DEPARTMENT OF COMMERCE - C. R. SMITH, Secretary

SAVANNAH, GEORGIA
TRAVIS FIELD

SEPTEMBER 1968

ENVIRONMERTAL SCIENCE SERVICES ADMINISTRATION -- ENVIRONMENTAL DATA SERVICE
Latitude 35" oa’N Longitude g4° 15 Elevation {(ground) an U Standard time used:  pagTERN
T
Temperature (°F Weather types |Snow.| Precipitation | AV8: Wind | Sunshi v
pera n ] Mhown by code | Stect, P station Sunshine S(l'(l');:?hse)r
1-9 on dates or pres- Fastest
f Total |Snow,i ¢ )
occurrence |ice on ure -3 mile
= 4 21 456 789 (Water | sleet (In.) e 2
E | & 2E|  E| 32 | = R b R R S A 32 2o 2
3 5 ¢ | 38|83 2 o H ent) Elev. EE|we~| ~| & | £E L% |z
g | 2| B |22\ %R ¢ z: 2loran | (n) QEZ192 |95 £ | 25 |52 84|28
g 3 E | & |EElszl 2% | i3 i fet' 28 23|55 Fs| 8 ) 32 BB E¥|5E g
85 H b : o 3 22| s
8| = = < |d2|<8| &2 |zi2 g | dn) msl w2 ws| 28 SE| A £S5 (&3 |22 |5€(8
1 2 3 4 5 6 7 8 9 10 i 12_13] 14 15 |16 17 18 19 | 20 | 21 {22
1 83 70 77| -3 72 0o i1l 8 [4 17 0{29.85|03| 3.5 6.8| 12| W Gub| 48| 9 8| 1
2 88 89 79 -1 70 ¢ 1 8 o [} 0129.94 |27 3.3 3.2 9 W 8,6 67 8 ] 2
3 90 1] 78 -2 66 0o 1 [} o 030,01 |11 1.1 3.3 8 S 10.4 82 6 [} 3
4 90 1} 70 -1 67 0 1 8 [} o 0/30,06|18| 1.8 3.6 11 S 10.6 a3 5 4 Y
5 a9 67 78 -l 71 [} 2 8 [¢] o 030,04 |13 2.2 2.9| 10| SE 9.1 71 [} 5 5
& 93¢ 68 81 2 72 o 23 [¢] 06 0/29.99|30| 2.6 3.3| 17| Sw 8.7 69 L) ? 6
7 88 7 80 1 73 [ 1 0 T 029.99|08] 3.3} 4.8 11 E 8.3 65 8 6 7
8 88 70 79 ] 73 [ 23 8 [¢] 01 0130,00(08} 4.6| 3.6| 14| SE 6.7 53 ° 9 8
9 88 71 80 2 72 ] 13 8 [ ole 0129.91|10| 3,7 %.3( 17! SE 10.0 80 7 7 9
10 89 69 79 1 71 [} 13 8 0 T 0,29,85|15| 2.0 4.3 17;: NE 8,8 70! 19 8 |10
11 a9 67 78 0 68 [} 1 0 7 0{29.89 (25| 6,3 7.5| 16 L] 10.7 s [} 6 11
12 a3 62 73 -5 (3% [ 8 [} o 029,96 (35| 2.2 3.7 10| NE 8.6 69| 10 9|12
13 83 61 72 -6 59 [} 8 [} [} 0{29,98103| 3.9 4.2 8| NE 11.0 88 8 6 |13
14 as 554 70 -7 59 [} 0 ] 0(29.98 (08| 1.9| 4.2/ 11 E 12.4)| 100 1 0| 1é
15 83 59 72 -5 61 [+] 1 8 ] [} 030,00 |08 5.5 6.2/ 16 E 11.3 91 5 4 |15
16 88 58 73 -4 65 [} 8 0 [} 0129,98(07( 5.5| 6.6 15 E 7.2 58 9 7|18
17 84 72 78 1 71 [ 8 [} «10 0{29.99|08| 8.3} 9.1 18 E 5.8 47| 10 {10 | 17
18 88 71 (1] “ 71 (o] 0 ] 029,93 08| 6.7 7.6 17 E 7.7 63 9 9 {18
19 87 T4 81 3 73 [} 3 0 T 0[29.98107) 8,3| 9.1 20| SE 5.6 45 9 7119
20 87 66 77 1 69 0 1 8 0 T 0(30.07i07| 7.7| 8.6 17 E 9.1 75 6 4 |20
21 87 63 73 -1 63 [+] 0 [} 0130.10{06| 8.,8| 9.4 15 E 12.2: 100 1 0|21
22 83 61 73 -3 63 0 0 [} 0(30.09 (035} 8.3| 9,1 16 NE 10.6 87 3 222
23 87 66 77 2 67 0 1 0 [} 0(30,04 (06| 6,1] 7.5| 16| NE 9.4 78 3 6 | 23
24 a7 63, 76 1 (1] [} 2 0 o 0[29,99{07| 4.2 6.0( 12 E 9.3 77 L] o | 24
23 88 65 7 2 66 [} 2 8 0 [} 0(29.93!09| 3.6 5.6/ 14 E T8 63 5 5|25
26 87 &4 76 1 (1] [} 2 8 ] [+] 0(29.88]10 4.0| 6.3]| 13 S 9.5 79 A 8|26
27 86 68 77 3 67 0 13 8 4] T 0|29.85;05| 5.2| 6,3 18 E 6.9 87 & 6 |27
28 86 68 76 2| &7 0 2 [} T 0/29.94 06| 5.3 7.2| 15| E 9.9/ 82! &| 5|28
29 88 .13 78 2 62 [+ 1 8 [+] 0 0(30.07|07{ 7.4| 8.2| 17| NE 10.4 87 8 6 |29
30 88 81 73 2 59 [} 1 8 0 [} 0/30,13(07| 4.3] 6.6 11 E 11.9| 100 1 2|30
Sum | Sum [———1——1]——] Total | Dep. | Temperature: Total | Total or the month Total % [Sum [Sum
2614 | 1974 — 0] 0 Number of days L 48 0]29,98[07] 3.5] 6.2] 201 SE [ 274.7] for [198 172
Avg. | Avg. T Avg. [ Dep. [ Avg. [Season to date|Max. [Max | Min. [Min Dep. |— — Date: 19 | Possible |month | AVg. [Avg.
87 1 635.W 76.5 0.8 &7 Total | Dep. <3z [poyf<ir|<o T rxal ey ey 370.9 6.6 5,7
» Extreme for the month. May be the o] o o[ 3[ o[ 0 Greatest in 24 hours and dates Greatest depth on ground of
last of more than one occurrence. Precipitation Snow, Sleet snow, sleet or ice and date
~ Below zero temperatures or negative departure from normal. 25 | 31-1 [ ]
T In columns 9, 10, and 11 and in the Hourly Precipitation 4 3 70° at Alaskan stalions. 4 Also on an carlier date, or dates.
table indicates an amount too small to measure.
— visibility % mile or less.
X Heavy fog —visibility % mife or less HOURLY PRECIPITATION (Liquid in Inches)
P A. M. Hour ending at P. M. Hour ending at v
8 IT 2 374 5 76 78 9T30 w12 1 2 3[4 56 718 9 10 1] 127]8
1 T T 02 .0l T «01f 05 .07 .01l T 1
2 2
3 3
I .
5 ]
6 04 02 T T [}
? Tt 7
8 T 01 T 8
9| .19 .01 .02 .01 9
10 TT 10
11 T T 11
12 12
13 13
14 16
15 15
16 16
17 .10 T T T 17
18 18
19 T T T T T T T 19
20 T T 20
21 21
22 22
23 23
24 24
25 25
26 26
27 T T 27
28 T 28
29 29
30 30
L
Data in columns 6, 12, 13, 14, and 15 are based on 8 observations per day at 3-hour intervals. Wind directions arc those AVERAGES BY HOURS Resul
from which the wind blows. Resultant wind is the vector sum of wind directions and speeds dmded by the number of PRI _ ind
observations. Figures for directions are tens of degrees from true North; i.c. 09 = East, 18 = Soulh, 27 = West, E|bZ F £ 3 H 3~
36 = Nonh, and 00 = Calm. When directions are in tens of degrees in Col. 17, entries in Col. 16 are fastest observed 32138 27 |2z | 2. | & §§‘ =z
1-minute speeds. If the / appears in Col. 17, specds are gusts. Any crrors detected will be corrected and changes in 3125 i"« - | % 3- | B¢ E;‘
summary data will be annotated in the annual Summary if published. 5 |#s = z [ X - ZE
- - - = - = 01| 5|29,97| 69| 68] 92| 67| 2.1 2.0
Subscription Price: Local Climatological Data XI.O(_) per vear including annual Summary if published. Single copy: 06| 6(29.96| 67| 67| 95 88| 3.9 2.9
10 eers for monily Surmruary 13 s o el S, Ceche 7 ey et sheuld be made pear 07| 7(29.99 e8| ¢7( 94| 66| 417/02| 318
ndence shoud e . . "] S
o e e G a0 " 10| 6|30.02] 80| 72| 70| 89| 7.9 5.0
- Tt T T 13| 7(29.99| 85| 73| 55| 66| 8.0 6.0
1 certify that this is an official publication of the Environmental Science Sersices Administration. and is compiled from 16! 7(29.95| B&} 727 56| 66 .10.8 7.2
records on file a1 the National Weather Records Cenier. Asheville. North Caroling. 28801, 19| 6(29.98] 76| 71| 75| 681 6.3 4.7
. i 22| 4/30,00] 72| 69) m8| 68, 4.3(08; 1.9
USCOMM —ESSA —~ASHEVILLE 200

Director. Notional Weather Records Center
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OBSERVATIONS AT 3-HOUR INTERVALS

AL

« = - = . o |= . = = . @ (@ .
w8z 9F |ailiy L3 92 |wiity ERS 2 |5 | wino gz| 95 ity ERH B
ggg ' WEATHER 8?, 5 weATHER (BT [BE T8 |3 & 85 58 Efnl il
HEF 34 @7 oyt oA E 2 < S otal | A
> BB 2| B2 |38 ot il R - I R L -4 Foh il
FE=|e2 N R A ] % F &[0
DAY 01 DAY 02
° UN| 63 59| 81/ 57/ 00f 0 i O UNL| i |GF 68| 66/ 90| 63|00/ 0 | O UNL sel2e| 3
o UNL| o1 58| 84 56/ 27| 3. o UNL| o [GF 63|62, 93| 61|00 0 i ofuntL 60{00| ©
0 UNL GF 60 57( 84 85| 32 3 i 2/ uNC(| o of 6F 60|58/ 90(57/00| 0 | ofunL s9i27| 3
1 uny| x 80 70| 60| 63/ 23| 5 o[ UNL| 8 o1(eois3|e2{27) & | ofumt s3|24| 8
1 N ssf 09| 42/ 60{ 21| 7 | 8| 40|10 8369/ 43(e0|25| 5 T[um. s3|23| 7
1 UNY 1 83 71| 53] 64| 16 10 i 6] UNL| 10 o5 71]48|63 17|12 | 9 umL 53(22( 7
19 1] U 73{ o8] 69 64/ 17| 9 | o] UNL| 10 73|67/66(63|17| 7 | 9fcin e8/18(10
2 UNL| 70l 67/ 87/ 06l 211 3| ol uni| 10| 10l6sl81leal18] 5 | slunt eslzol 8
DAY 04 DAY 03 DAY 06
[} uny 7| 70| 67| 84| 63/ 21] 7 | ©| UNL| 13| s8( 50|55/ 42/08] 8 | 8|umMLi12 59/95(75|51|03] 5
o4 19 120 10 70 66| 79[ 63( 23] 8 | 4| UNL|12 3540/ 51/37(03| 8 i 7T[umL| & 38(95(04(83 (04| 5
0 uNl 7] 67 64| 07| 63 270 6 | 4|UNL|12 52(43/ 49|33 04|10 | 10[100| 5| [K 58(55(04(53 (05| &
1 UNU 12) 78| 68| 60| 83{ 0L 10 | 5| UNL| 18 ©7|53|36[39/07(13 | 10] el # 74|66 (04|81 (10|10
13 10 CIR 12 83 63| 36, 931 34| 10 | 3| UNL|1S 74|59|40[a0i08(12 | 10| 33010 7967|5099 (15|13
1 CIN 13 82| 82 29| 47/ 33| '8 | 5| UNL|13 74(59|40[48l08(10 | 10{140(10 78|68 (58|62 (13|12
1 UNL] 15 69( 58/ 49/ 49/ 03] 6 i | CIRI1S 63|56/ 56[40/08 7 | 10{140(10 76(70(74 (67 14| &
220 1 und 12 62l 53/ 521 a4l 04l 5 | 10l Unl12 s1l33l67ls0l071 7 | 10l a0l10 16l72182170119] 7
DAY 07 DAY 08 DAY 09
01| 10/ 140| 10 72| 69| 47/ 68| 25| 3 | 10| 10| t|elF 73| 71|90|70l08] 3} 10/ 3| o|8[F s8|67(9360(d6| 7
os 100 4 2| |Gf 71 69( 90/ 60/ 24/ & i SIUNL| 0| 4| GF 71709369 28] & | 10| 4| 1] |F 68 (66/90(63 02| 7
07 10 33 2| |cF 72| 70 90| 69| 22] 3 i 10/ CIR] o|2|6GF 6968/ 93|67/07 3 10| 7| 1[e[F 69|66187|63 03| 9
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REFERENCE NOTES

CEILING COLUMN—
UNL indicates an unlimited
ceiling.

CIR indicates a cirriform
cloud ceiling of unknown
height.

WEATHER COLUMN—
*  Tornado

Rain
RW Rain showers
ZR Freezing rain
L izzle
ZL  Freezing drizzle
Snow
Snow pellets
1IC  Ice crystals
SW  Snow showers
SG Snow grains

E  Sleet
A Hail
AP Smail hail
F  Fog
IF  Ice fog
GF Ground fog
BD Blowing dust
BN Blowing sand
BS Blowing snow
BY Blowing spray
K  Smoke
H  Haze
D Dust

WIND COLUMNS—

Directions are those from
which the wind blows, indi-
cated in tens of degrees
from true North; i. ¢., 09
for East, 18 for South, 27
for West. Entry of 00 in
the direction column indi-
cates calm.

Speed is expressed in knots;

mulnfly by 1.15 to conven
to miles per hour.

ADDITIONAL DATA

Other observational data con-

tained in records on file can
furnished at cost via micro-

film or microfiche copies of

the original records. Inquiries

as to availability and

costs should be addressed to:

Director

National Weather Records Center

Fedcral Building
Asheville, N. C. 28801
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APPENDIX B

CONSTRUCTION SKETCHES OF BOTTOM SENSOR
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DATA FROM SHOAL SAMPLE ANALYSES
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FLOCCULATION TESTS

Bottom samples taken with modified Trask sampler at 4 locations in the shoal area. The
top centimeter of material was removed from each sample and percent moisture content
determined. A composite sample of about one pint was made up from bottom material ob-
tained no deeper than one foot below the top of the shoal.

Composite
Location Date Moisture Content Bottom Sample No.
(1968) Percent
A B c D E F Avg.
131 South 20 Sep 84.6 B84.8 84.0 80.9 85.2 84.9 84.1 1
128 North 20 Sep 80.6 79.8 80.9 83.1 76.8 78.6 80.0 2
125 South 20 Sep 92.8 88.1 88.0 88.4 88.0 86.9 88.7 3
122 South 19 Sep 82.7 84.2 84.0 84.7 83.9 4
131 South 1 Oct 83.3 - 82.7 84.2 83.4 "5
128 North 1 Oct 80.6 78.9 82.3 - 80.6 6
125 South 1 Oct 86.3 86.0 86.1 86.3 86.2 7
122 North 1 Oct 84.7 84.9 85.5 84.6 84.9 8
131 South 11 Oct 84.9 82.3 83.9 83.7 83.7 9
128 North 11 Oct 90.0 86.5 83.5 8l1.7 85.4 10
125 South 11 Oct 86.5 84.6 87.6 86.7 86.4 11
122 North 11 Oct 82.6 82.8 84.5 83.9 83.5 12
131 South 22 Oct 81.7 82.5 83.2 80.9 82.1 13
128 North 22 Oct 83.6 87.4 81.2 84.7 84.2 14.
125 South 22 Oct 85.8 91.9 90.8 87.0 88.9 15
122 North 22 Oct 82.5 83.7 82.2 8l.1 82.4 16

Note: One extra sample No., 3 at Sta 125 South - 20 Oct.

Cl



: Report on
Corps of Engineers, USAE | Physical, Chemical, and | Concrete Division

Waterways Experiment Petrographic Data P. O. Drawer 2131
Station Jackson, Mississippi
Project FExamination of 16 Samples from Shoals Date '
in Savannah, Georgia Harbor 20 February 1969
Job No. Sh6-H377.19SE31 Initials: BA
Samples

1. Sixteen samples from shoals in Savannah Harbor, Georgia,
were received for testing by the Soils Division of the U. S. Army
Engineer Waterways Experiment Station (WES) in the fall of 1968. Each
sample was a combination of sediment and water in a one-pint jar.
The Soils Test Section divided the samples, keeping part of each for
their tests and forwarding the balance of each (about 25 g) to the
Concrete Division (CD) on 15 November 1968. The 16 samples are

identified below by CD serial number and field number:

CD Serial No. Field No.
WES-40 Ss-1 (A through D) Sta 131 S - Samples 1, 5, 9, 13
WES-40O Ss-2 (A through D) Sta 128 N - Samples 2, 6, 10, 1k
WES-LO Ss-3 (A through D) Sta 125 S - Samples 3, 7, 11, 15
WES-U40 Ss-4 (A through D) Sta 122 N - Samples 4, 8, 12, 16

Test Procedure

2. The Soils Test Section determined particle-size distribu-~
tion and specific gravity for 1k samples, and weight loss on ignition
at 800 C for 12 of the samples. There was insufficient material to do
these tests for the other samples. -
3. The CD determined total cation-exchange capacity (CEC) of
each sample, made a petrographic examination of all samples, and measured

the weight loss of four samples at 375 C as a measure of organic content.

WES Form No.

Rev. March 1964 1115 Ce



Physical, Chemical, and

Petrographic Report (Continued) Date: 20 February 1969

Project: Examination of 16 Samples from Shoals in Savannah, Georgia, Harbor
4, The different tests are described in the following subparagraphs:

a. Particle-size distribution and ignition loss. The Soils Test

Section determined the gradation and specific gravity of the
samples in the as-received condition in accordance with pro-
visions of Appendices IV and V of EM 1110-2-1906, dated 10 May
1965. The Soils Test Section also determined the loss on

ignition as outlined in Methods of Analysis of the Association

of Official Agricultural Chemists, 6th edition, 1945. That

procedure consisted of processing the sample (wet) through a
No. 10 U. S. standard sieve, heating approximately 2 grams
(dry weight) of the material at 105 C for five hours, and then
igniting the specimen at 800 C for one hour and calculating

the weight loss.

o

Cation-exchange capacity. Each sample was air dried and passed

through a No. 10 sieve. Cation-exchange capacity was then
determined on each of the samples by replacing the native
exchangeable cations with 1 N sodium acetate, removal of the
excess sodium acetate with alcohol, replacement of the adsorbed
sodium acetate with 1 N ammonium acetate, and determination

of the replaced sodium.

Ie]

Petrographic examination. The remainder of each air-dried sample

was ground to pass a No. 325 sieve (4Lu). The samples were

then examined on an XRD-5 diffractometer using nickel-filtered

C3



Physical, Chemical, and
Petrographic Report (Continued) Date: 20 February 1969
Project: Examination of 16 Samples from Shoals in Savannah, Georgia, Harbor

e

1o

copper radiation at 27 kvcp and 41 ma or 50 kvcp and 21 ma

at scanning speeds of 2 deg 20 per minute or 0.2 deg 20 per

minute under the following conditions:

(1) Tightly packed powders.

(2) As a slurried slide of the material finer than No. 325
sieve, both air-dried and after glycerolation.

(3) Selected samples were examined as air-dried sedimented
clay slides of minus 2y material, and as sedimented
slides heat-treated at 150 C, 300 C and 450 C.

N

Differential thermal analysis. Selected samples passing a

No. 325 sieve were examined by differential thermal analysis
(DTA) in a nitrogen atmosphere, using a heating rate of
10 C per minute.

Organic content. Keeling* has shown that ignition of clay

samples at 375 C for 16 hours removes the carbonaceous
materials in clays, without removing water contained in the
structure of the clay, and without destroying either iron
sulfides or carbonates which may be present. One sample
from each station was ignited at 375 C for 16 hours and

the loss in weight was determined.

*Keeling, P. S., "Some Experiments on the Low-Temperature Removal of
Carbonaceous Material from Clays," Clay Minerals Bulletin, Vol 5,
No. 28, December 1962, pp 155-158.

ch



Physical, Chemical, and
Petrographic Report (Continued) Date: 20 February 1969
Project: Examination of 16 Samples from Shoals in Savannah, Georgia, Harbor

f. Other examinations. Dilute hydrochloric acid and a magnetized

needle were used to check for the presence of carbonate minerals

and magnetic iron-bearing minerals respectively. Powder immer-

sion mounts were examined with a petrographic microscope.

Results
5. Particle-size distribution curves for all samples except 4 and 6 are

shown in figs. 1-14. All of the physical and chemical data obtained are
reported on table 1. Samples 4 and 6 were too small to permit particle-size
distribution, specific gravity, and loss on ignition at 800 C to be determined.
Samples 13 and 15 were too small to permit loss on ignition at 800 C to be
determined. The samples contain much more material finer than 2y than most
soils or sediments. The material finer than 2y makes up 52 to 65 percent

of each sample.

Station No. Sample No. Sampling Date Cunulative % == 2y

1318 1 20 Sep 68 60
5 1 Oct 68 65
9 11 Oct 68 62
13 22 Oct 68 60

Range for Station 131S 60 - 65
1258 3 20 Sep 68 58
7 1 Oct 68 59
11 11 Oct 68 59
15 22 Oct 68 61

Range for Station 1258 58 - 61
122N 4 20 Sep 68 nd
8 1 Oct 68 52
12 11 Oct 68 57
16 22 Oct 68 56

Range for Station 122N 52 - 57

(Continued)
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Physical, Chemical, and
Petrographic Report (Continued) Date: 20 February 1969
Project: Examination of 16 Samples from Shoals in Savannah, Georgia, Harbor

Station No. Sample No. Sampling Date Cumulative % -- 2u
128N 2 20 Sep 68 60
6 1 Oct 68 nd
10 11 Oct 68 55
14 22 Oct 68 57
Range for Station 128N 55 - 60

6. The compositions and relative proportions of minerals in all
16 samples are very similar. The representative composition and proportions
are shown below:

Constituents Relative Abundance

Clay Minerals

Kaolin Abundant
Clay-mica Minor
Montmorillonite Minor
Vermiculite Minor

Nonclay Minerals

Quartz Minor

Plagioclase Very Minor - Minor
Potassium feldspar Very Minor - Minor
Halite Minor

Pyrite Minor

Cristobalite Trace ?

Halite was found in the samples examined as air~dried powders and slurries,
but not in sedimented slides prepared from dilute suspensions. Two minerals
were identified which are characterized by basal spacings at about 1l4-A in
the air-dry condition--montmorillonite and vermiculite. When sedimented
slides were examined after glycerolation, basal spacings at about 14 A

and 17 A were found, indicating the presence of a nonexpanding mineral with
a lh-A spacing and the presence of an expanding montmorillonitic clay form-

ing a complex with glycerol. The two minerals contributing to the 14-A

cé



Physical, Chemical, and Date: 20 February 1969
Petrographic Report (Continued)

Project: Examination of 16 Samples from Shoals in Savannsh, Georgia, Harbor
spacing in air-dried sedimented slides collapsed partially after heat treat-
ment at 150 C, leaving a barely perceptible hump in the 6 to 7 28 region
(14.7 to 12.6 A) which was not present in slides heat treated at 300 C or
450 C.

7. Several workers have reported poorly crystallized vaguely charac-
terized clay minerals from estuaries on the Atlantic Coast of the south-
eastern United States;* they may differ from river to river depending
on local differences in material eroded. They have been referred to
as chlorite-vermiculite and as vermiculite. The preponderant evidence
obtained on this group of samples indicates that vermiculite is present.

It cannot be uneguivocally demonstrated that interlayered chlorite-vermiculite,
or chlorite, is absent. Neiheisel and Weaver did not report vermiculite from
Savannah Harbor.

8. Diatom fragments were observed by microscope in most samples and

are undoubtedly present in all. They are probably the source of the cristo-

balite that is believed to be present.

* Powers, M. C., "Adjustment of Clays to Chemical Change and the Concept of
Equivalence Level," Clays and Clay Minerals, Proc., Sixth National Confer-
ence on Clays and Clay Minerals, 1957, p 309, Ada Swineford, Editor,
Pergamon Press, 1959. ’

Nelson, B. W., "Clay Mineralogy of the Bottom Sediments, Rappahannock River,
Virginia," Clays and Clay Minerals, Proceedings, Seventh National Conference
on Clays and Clay Minerals, 1958, A. Swineford, Editor, Pergamon Press, 1960,
P 135.

Neiheisel, J., and Weaver, C. E., "Transport and Deposition of Clay Minerals,
Southeastern United States," Journal of Sedimentary Petrology, Vol 37, No. 4,
pp 1084-1116, December 1967.
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Petrographic Report (Continued) Date: 20 February 1969
Project: Examination of 16 Samples from Shoals in Savannah, Georgia, Harbor
9. The loss on ignition of samples fired at 800 C for one hour

ranged from 13.9 to 17.7 percent, while the loss on ignition of samples
fired at 375 C for 16 hours ranged from 9.0 to 9.7 percent. Presumably
the losses at 800 C include the hydroxyl in the structures of the clays
and may include results of breakdown of very minor quantities of sulfides
and carbonates in the samples. Kaolin, the major clay mineral in all
the samples, is not stable above 550 - 600 C and loses four (OH). The
loss in weight of the samples ignited at 375 C is believed to be a good
measure of the organic content in the samples.

10. The clay minerals present in all samples were poorly crystalline,
The nonclay minerals were present as very fine particles with over
90 percent passing a No. 200 sieve. Under the microscope the sample
appears to be over 80 percent clay while the X-ray pattern appears to
show that clay is present in an amount less than 20 percent. This in-
consistency is somewhat explained by a high background level on the
X-ray patterns and the obviously poor crystallinity of the clay minerals

present. Clay minerals are believed to amount to more than half of each

sample,

c8
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Petrographic Report (Continued) Date: 20 February 1969
Project: Examination of 16 Samples from Shoals in Savannah, Georgia, Harbor

11. The sixteen samples from shoals in Savannah Harbor are of similar
mineral composition, consisting of the clay minerals kaolin, clay mica,
montmorillonite, and vermiculite, and of the nonclay minerals quartz, plagio-
clase and potassium feldspar, pyrite, halite (from the estuarine water),
and possibly cristobalite. All of the samples were very fine grained with
over 50 percent finer than 2u. Cation-exchange capacity ranged in single
determinations from 30.4 to 43.3 meq per 100 g; the highest average value
was that for station 122N, 38.9, but the highest individual value was deter-
mined in sample 6 from station 128N.

12. We did not find a relation between any pair or group of properties
determined for this group of samples when the samples were sorted either by
stations or by sampling days.¥ It is possible that trends would become apparent
if either samples from more stations or samples taken on more days, or both,
were available.

13. The mineral composition is reasonable considering the geology of
the source area and previous published results on samples from the Savannah

River (ref 3, p 6).

* Samples 1, 2, 3, L(?) were taken 20 Sep 68; samples 5, 62, 7, 8, 1 Oct 68;
samples 9, 10, 11, 12, 11 Oct 68; samples 13, 1k, 15, 16, 22 Oct 68.

15 Incl
Table 1
Figs. 1-1k
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Table 1

Physical Data on 16 Shoal Samples
from Savannah Harbor

%
Field % Wt Organic
Identification Specific  Cation-Exchange Capacity Loss on Content
Station Sample Gravity Milliequivalents/ioo g Ignition (wt loss
No. No. Gg Sample Avg for Shoal at 800 C at 375 C)
131 S 1 2.60 35.2) 16.4 9.1
5 2.53 39.6) 6.4 16.6
9 2.57 32.4) ) 15-5( )
13 2.58 38.2) n.d.\2
Range 2.53 - 2.60 32.4 - 39.6 15.5 - 16.6
128 N 2 2.53 35.9) 15.4 9.0
6 n.d. 43.3) 36.2 n.d.
10 2.58 33.5) ' 13.9
14 2.62 32.0) 16.4
Range 2.53 - 2.62 32.0 - 43.3 13.9 - 16.h
125 S 3 2.54 38.3) 17.7 9.4
7 2.52 30.4) 36.9 16.6
11 2.60 40.0) ' 15.7
15 2.63 38.8) n.d.
Range 2.52 - 2.63 30.4 - 40.0 15.7 - 17.7
122 N(b) 4 n.d. 42.3) n.d. 9.7
8 2.53 38.0) 38.9 15.1
12 2.56 37.6) : 16.3
16 2.53 37.6) 14.8
Range 2.53 - 2.56 37.6 - L2.3 14.8 - 16.3

(a) Not determined.
(b) It is possible that sample 4 was taken on the south side of the river
and samples 8, 12, and 16 on the north.
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